(5/2)x-(2/3)=2

Simple and best practice solution for (5/2)x-(2/3)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/2)x-(2/3)=2 equation:



(5/2)x-(2/3)=2
We move all terms to the left:
(5/2)x-(2/3)-(2)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (5/2)x-2-(2/3)=0
We add all the numbers together, and all the variables
(+5/2)x-2-(+2/3)=0
We multiply parentheses
5x^2-2-(+2/3)=0
We get rid of parentheses
5x^2-2-2/3=0
We multiply all the terms by the denominator
5x^2*3-2-2*3=0
We add all the numbers together, and all the variables
5x^2*3-8=0
Wy multiply elements
15x^2-8=0
a = 15; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·15·(-8)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*15}=\frac{0-4\sqrt{30}}{30} =-\frac{4\sqrt{30}}{30} =-\frac{2\sqrt{30}}{15} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*15}=\frac{0+4\sqrt{30}}{30} =\frac{4\sqrt{30}}{30} =\frac{2\sqrt{30}}{15} $

See similar equations:

| 4(h-49)=16 | | X/4-2=p | | -4z=7-5z | | 0.4(4+x)=4.5 | | 34+14+6a=180 | | 2+3y-3y-17=-7 | | p÷12=22.36 | | 2x-7+2x-3=180 | | 5x-10=x+14+x+9 | | 10-s=5s-8 | | -1x/2;=3 | | (5x-20)+100=180 | | 19+y=7 | | 6x-70+5x=40 | | 19-2x^2=-98 | | (5x-20)+100=180; | | (5x/2)-(2/3)=2 | | r2+ 7=11 | | 46/6=56/h | | y/7+6=7 | | 30=b÷-6 | | 2x−4=38−5x | | 3-7r=8+2(5-10r) | | 1.4+b=3.6 | | 3h-7=24 | | 8(x+2)=–32 | | w-4/8=5/8 | | 9^x-5=42 | | 10-6x=4x-5 | | 0.20x+4=0.40x+2 | | z/7-4=-20 | | 13y=42+6y |

Equations solver categories