(5/2)d-3/2=-1/2

Simple and best practice solution for (5/2)d-3/2=-1/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5/2)d-3/2=-1/2 equation:



(5/2)d-3/2=-1/2
We move all terms to the left:
(5/2)d-3/2-(-1/2)=0
Domain of the equation: 2)d!=0
d!=0/1
d!=0
d∈R
We add all the numbers together, and all the variables
(+5/2)d-3/2-(-1/2)=0
We multiply parentheses
5d^2-3/2-(-1/2)=0
We get rid of parentheses
5d^2-3/2+1/2=0
We multiply all the terms by the denominator
5d^2*2-3+1=0
We add all the numbers together, and all the variables
5d^2*2-2=0
Wy multiply elements
10d^2-2=0
a = 10; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·10·(-2)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*10}=\frac{0-4\sqrt{5}}{20} =-\frac{4\sqrt{5}}{20} =-\frac{\sqrt{5}}{5} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*10}=\frac{0+4\sqrt{5}}{20} =\frac{4\sqrt{5}}{20} =\frac{\sqrt{5}}{5} $

See similar equations:

| 3x*2-5=2x | | -1/4(x+7)=-x | | x+165=310 | | 30.49=6g+3.83 | | −3x=24 | | -7m+10=-9m | | x=165/310 | | 4(3x+6)-6(3x-7)=10x+3(2x-7) | | (2x-1)/3=-4 | | 165x=310 | | x/310=165 | | .8x+4=0 | | -2-4x=7x-8 | | x/165=310 | | x-165=310 | | 4n+6-2n=2(n+4) | | 165-x=310 | | 1/4y-7=1/10y | | .2x^2-80x+2000=0 | | 5w+9.9=4.8+ | | (7x+2)(4x)=180 | | 5-8r-r-4=-1r | | 9-5x-4x=36 | | 2x+42°=x-24° | | 5m-2(m+2)=-1(2m+15)+1 | | 3x+0.75=5.88 | | 2(x+1)−9x=−(x−10)+(2x+2) | | 1/4(y+2)+7=1/3(4y-1)-16 | | 4k+5=3(6k-14)+89 | | 48a-22=-4 | | 3/2(d÷12)=1/2(2d-6) | | x^2=15/100 |

Equations solver categories