If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5/12)*d+(1/6)*d+(1/3)*d+(1/12)*d=6
We move all terms to the left:
(5/12)*d+(1/6)*d+(1/3)*d+(1/12)*d-(6)=0
Domain of the equation: 12)*d!=0
d!=0/1
d!=0
d∈R
Domain of the equation: 6)*d!=0
d!=0/1
d!=0
d∈R
Domain of the equation: 3)*d!=0We add all the numbers together, and all the variables
d!=0/1
d!=0
d∈R
(+5/12)*d+(+1/6)*d+(+1/3)*d+(+1/12)*d-6=0
We multiply parentheses
5d^2+d^2+d^2+d^2-6=0
We add all the numbers together, and all the variables
8d^2-6=0
a = 8; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·8·(-6)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*8}=\frac{0-8\sqrt{3}}{16} =-\frac{8\sqrt{3}}{16} =-\frac{\sqrt{3}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*8}=\frac{0+8\sqrt{3}}{16} =\frac{8\sqrt{3}}{16} =\frac{\sqrt{3}}{2} $
| 180=x^2-8+(-8x+1)+(-7x) | | 14-8b+12=62 | | n^2+6n+2n=-6 | | 2m-3(m+1)=4(m+3)m+ | | -2x+2=2x-8 | | 77=-53+10x | | 2z−(7−5z)−21=0 | | x-0.4x=6000 | | x-0.4=6000 | | (4x+5)=(5x+14) | | .6x=6000 | | x*x+10*x-56=0 | | 3,2x+(x-1,5)=0,6x-1,8 | | 5(x+6-2x)=3(x+10) | | (1/1296)=(6^7x) | | 4x−7=2x+7. | | 8x/6+2=3/6 | | 5−2x=−11 | | 16+2r/5=32 | | 4x/8=3/2 | | -7x/8-3=18 | | 65=1/5(w-10(4) | | 7x+1.6=8x-1.3 | | r/3-42=18 | | 2a-56=-12 | | 10a-64=26 | | 4b+13=45 | | 3(5x+3)=x-3 | | 8x+52x-5=20-x | | s=1/5(300-10(5) | | 1/5y+11=3-3/5 | | 41-5b=-9 |