(5-x)(3x-1)-(4x+2)(5-x)=0

Simple and best practice solution for (5-x)(3x-1)-(4x+2)(5-x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5-x)(3x-1)-(4x+2)(5-x)=0 equation:



(5-x)(3x-1)-(4x+2)(5-x)=0
We add all the numbers together, and all the variables
(-1x+5)(3x-1)-(4x+2)(-1x+5)=0
We multiply parentheses ..
(-3x^2+x+15x-5)-(4x+2)(-1x+5)=0
We get rid of parentheses
-3x^2+x+15x-(4x+2)(-1x+5)-5=0
We multiply parentheses ..
-3x^2-(-4x^2+20x-2x+10)+x+15x-5=0
We add all the numbers together, and all the variables
-3x^2-(-4x^2+20x-2x+10)+16x-5=0
We get rid of parentheses
-3x^2+4x^2-20x+2x+16x-10-5=0
We add all the numbers together, and all the variables
x^2-2x-15=0
a = 1; b = -2; c = -15;
Δ = b2-4ac
Δ = -22-4·1·(-15)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-8}{2*1}=\frac{-6}{2} =-3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+8}{2*1}=\frac{10}{2} =5 $

See similar equations:

| -5(2d+8)=35 | | (x+2)(x+3)=740 | | 9(3b-2)=-23 | | -3x+5=9-5x | | 28=-4v+8v | | x^2+5x-734=0 | | 6(x-2)+7=25 | | 5x-8+6=-24 | | -¾x+5=0 | | 15=-9h+8h | | -4+7(1+2n)=-24 | | ⅖y-12=8 | | -25=-5+2(y-7) | | 2.5b=5.5 | | 5a-9a=-26 | | 6x+20=500 | | 2x²+32=16x | | X-(2x÷4)=4x-7 | | 16-4n=-5 | | 78,5=3,14*x | | 78,5=3,14+x | | 5x=45-10 | | 5x+17=77-5x | | 5x+48=3x+63 | | 1516.5+12.5x=1604 | | 14a+5=53+2a | | 8(3w+5)/3=-11 | | 12x+27=2x+57 | | 88=x | | 7a-2a=50 | | 12.20h=90.45-7.15 | | 5a-7=48 |

Equations solver categories