(5-7)/x=(2(x+4))/x

Simple and best practice solution for (5-7)/x=(2(x+4))/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5-7)/x=(2(x+4))/x equation:



(5-7)/x=(2(x+4))/x
We move all terms to the left:
(5-7)/x-((2(x+4))/x)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(-2)/x-((2(x+4))/x)=0
We calculate fractions
(-2)*x)/x^2+(-((2(x+4))*x)/x^2=0
We calculate fractions
((-2)*x)*x^2)/(x^2+(*x^2)+(-((2(x+4))*x)*x^2)/(x^2+(*x^2)=0
We calculate terms in parentheses: +(-((2(x+4))*x)*x^2)/(x^2+(*x^2), so:
-((2(x+4))*x)*x^2)/(x^2+(*x^2
We multiply all the terms by the denominator
-((2(x+4))*x)*x^2)+((*x^2)*(x^2
Back to the equation:
+(-((2(x+4))*x)*x^2)+((*x^2)*(x^2)
We get rid of parentheses
((-2)*x)*x^2)/(x^2+*x^2+(-((2(x+4))*x)*x^2)+((*x^2)*x^2=0
We multiply all the terms by the denominator
((-2)*x)*x^2)+(*x^2)*(x^2+((-((2(x+4))*x)*x^2))*(x^2+(((*x^2)*x^2)*(x^2=0

See similar equations:

| 5-7/x=2(x+4)/x | | 12=5y-(4+y) | | (b-10)-4=10 | | 2x-20=500 | | 36y2−64=0 | | 2x-20+50=500 | | 12-3p=0 | | 2z6+2=0 | | X+1÷2=1-3x÷5 | | -2x+4=3x+14,x= | | 4(2n+-3)*n=5 | | 3x-3=x+3,x= | | s^4-5s^2-4=0 | | 80x-10=+1020x | | -5a/2=-2 | | 2x-5=11x= | | 5x+6=16x= | | 2b-100=75 | | 3-(7x-15)=8x | | 2a-100=0 | | 22=4+2x | | G(x)=|x-6|+3 | | (x+2)/9=(x+4)/11 | | x*x^2+5x^2-18x-12=0 | | X^3+5x^2-18x-12=0 | | 0=4t+3t^2 | | 5=2x5=X | | 2x*(2x-3)=(3-2x)*(2-5x) | | 5x−12∘=2x+24∘ | | 2(-2+7x)=172 | | 15x+25=-6+8 | | 6x-48=4x+ |

Equations solver categories