If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5+1/6+)x+(2+1/4)=10
We move all terms to the left:
(5+1/6+)x+(2+1/4)-(10)=0
Domain of the equation: 6+)x!=0determiningTheFunctionDomain (5+1/6+)x-10+(2+1/4)=0
We move all terms containing x to the left, all other terms to the right
)x!=-6
x!=-6/1
x!=-6
x∈R
We add all the numbers together, and all the variables
(+1/6)x-10+(1/4+2)=0
We multiply parentheses
x^2-10+(1/4+2)=0
We get rid of parentheses
x^2-10+2+1/4=0
We multiply all the terms by the denominator
x^2*4+1-10*4+2*4=0
We add all the numbers together, and all the variables
x^2*4-31=0
Wy multiply elements
4x^2-31=0
a = 4; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·4·(-31)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{31}}{2*4}=\frac{0-4\sqrt{31}}{8} =-\frac{4\sqrt{31}}{8} =-\frac{\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{31}}{2*4}=\frac{0+4\sqrt{31}}{8} =\frac{4\sqrt{31}}{8} =\frac{\sqrt{31}}{2} $
| 5+1/6x+2+1/4=10 | | 23-4m=5m+7 | | 2=12+2v−8 | | 2/3(3x+2)=2x | | 8(x+2)+3=67 | | .75x=572 | | -32=-4+u/4 | | 3x−x+12−6x=4(5−2x)−(−4x) | | 25m+700=75 | | 12-6(w-3)=3(-5-3w) | | 7d+d+4d-7-6d=0 | | 4/5m=-40 | | -4(x+7)=-4 | | 4x-16=2x+18 | | 3x−(x−x)=x+4 | | 3(3x−4)=−9x+11 | | 6m+5=-19 | | -5b+8=-5b-8 | | 7+x4=3 | | 13x-2=10x | | .20x+.25(50)=21.5 | | 50-12x=30-4x | | 73x+71=73x=71 | | 3x-38=2x+14 | | 7x+3(-3x+20)=42 | | 47.25-m=-23.75 | | 3x^2-24x+110=-70 | | -29-3s=-20 | | 2x=12x-9 | | 1/6*6z=12*1/6 | | x+3x-7=4+-7 | | 180=2x-36 |