If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (4y + 1)(y + 1)(4y) = (6y * y + -4y)(3y)(h) Reorder the terms: (1 + 4y)(y + 1)(4y) = (6y * y + -4y)(3y)(h) Reorder the terms: (1 + 4y)(1 + y)(4y) = (6y * y + -4y)(3y)(h) Remove parenthesis around (4y) (1 + 4y)(1 + y) * 4y = (6y * y + -4y)(3y)(h) Reorder the terms for easier multiplication: 4y(1 + 4y)(1 + y) = (6y * y + -4y)(3y)(h) Multiply (1 + 4y) * (1 + y) 4y(1(1 + y) + 4y * (1 + y)) = (6y * y + -4y)(3y)(h) 4y((1 * 1 + y * 1) + 4y * (1 + y)) = (6y * y + -4y)(3y)(h) 4y((1 + 1y) + 4y * (1 + y)) = (6y * y + -4y)(3y)(h) 4y(1 + 1y + (1 * 4y + y * 4y)) = (6y * y + -4y)(3y)(h) 4y(1 + 1y + (4y + 4y2)) = (6y * y + -4y)(3y)(h) Combine like terms: 1y + 4y = 5y 4y(1 + 5y + 4y2) = (6y * y + -4y)(3y)(h) (1 * 4y + 5y * 4y + 4y2 * 4y) = (6y * y + -4y)(3y)(h) (4y + 20y2 + 16y3) = (6y * y + -4y)(3y)(h) Multiply y * y 4y + 20y2 + 16y3 = (6y2 + -4y)(3y)(h) Reorder the terms: 4y + 20y2 + 16y3 = (-4y + 6y2)(3y)(h) Remove parenthesis around (3y) 4y + 20y2 + 16y3 = (-4y + 6y2) * 3y(h) Reorder the terms for easier multiplication: 4y + 20y2 + 16y3 = 3y * h(-4y + 6y2) Multiply y * h 4y + 20y2 + 16y3 = 3hy(-4y + 6y2) 4y + 20y2 + 16y3 = (-4y * 3hy + 6y2 * 3hy) 4y + 20y2 + 16y3 = (-12hy2 + 18hy3) Solving 4y + 20y2 + 16y3 = -12hy2 + 18hy3 Solving for variable 'y'. Reorder the terms: 12hy2 + -18hy3 + 4y + 20y2 + 16y3 = -12hy2 + 18hy3 + 12hy2 + -18hy3 Reorder the terms: 12hy2 + -18hy3 + 4y + 20y2 + 16y3 = -12hy2 + 12hy2 + 18hy3 + -18hy3 Combine like terms: -12hy2 + 12hy2 = 0 12hy2 + -18hy3 + 4y + 20y2 + 16y3 = 0 + 18hy3 + -18hy3 12hy2 + -18hy3 + 4y + 20y2 + 16y3 = 18hy3 + -18hy3 Combine like terms: 18hy3 + -18hy3 = 0 12hy2 + -18hy3 + 4y + 20y2 + 16y3 = 0 Factor out the Greatest Common Factor (GCF), '2y'. 2y(6hy + -9hy2 + 2 + 10y + 8y2) = 0 Ignore the factor 2.Subproblem 1
Set the factor 'y' equal to zero and attempt to solve: Simplifying y = 0 Solving y = 0 Move all terms containing y to the left, all other terms to the right. Simplifying y = 0Subproblem 2
Set the factor '(6hy + -9hy2 + 2 + 10y + 8y2)' equal to zero and attempt to solve: Simplifying 6hy + -9hy2 + 2 + 10y + 8y2 = 0 Reorder the terms: 2 + 6hy + -9hy2 + 10y + 8y2 = 0 Solving 2 + 6hy + -9hy2 + 10y + 8y2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
y = {0}
| 15x-12=63 | | y^2+(y+5)=0 | | 16x^4y-81=0 | | 5(x-7)+15(x+11)= | | 49=-15(y+8) | | 3/5=4/n | | 4-9=-14 | | 12=2(v+4)+2v | | 7(y-8)+6y=-17 | | 6x^4-116x^3-80x^2=0 | | 2(3x-x+3)=-6(x+9) | | X(20x+21-54)= | | 10=(0.6x)+25y | | X-72=28 | | 5x-7+9x-22+61+34=360 | | 1.9(2.1-w)=3.5(3w-8.2) | | 183x+5=186x | | 4(y-5)+6= | | -6+5=16 | | 3.35+(-0.715t)=12.9+2.035t | | x+.095x=2500 | | 10=0.6x+25y | | b+90=99 | | (3-5*5)-4z+2=z(3-5)-8 | | 24=-26(y+2) | | -8a^2+2ab+3b^2=0 | | 9x^2+63x+108=0 | | 10=0.6+25y | | 9z+x^2+y^2=0 | | ((2)/(10x))*((x-4)/(6)) | | 1.8/100=1.6/x | | 20x^2-12x=90 |