(4x2+28x+27)/x+6=0

Simple and best practice solution for (4x2+28x+27)/x+6=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x2+28x+27)/x+6=0 equation:



(4x^2+28x+27)/x+6=0
Domain of the equation: x!=0
x∈R
We multiply all the terms by the denominator
(4x^2+28x+27)+6*x=0
We add all the numbers together, and all the variables
6x+(4x^2+28x+27)=0
We get rid of parentheses
4x^2+6x+28x+27=0
We add all the numbers together, and all the variables
4x^2+34x+27=0
a = 4; b = 34; c = +27;
Δ = b2-4ac
Δ = 342-4·4·27
Δ = 724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{724}=\sqrt{4*181}=\sqrt{4}*\sqrt{181}=2\sqrt{181}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{181}}{2*4}=\frac{-34-2\sqrt{181}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{181}}{2*4}=\frac{-34+2\sqrt{181}}{8} $

See similar equations:

| 0=-16x^2-30x+600 | | 6-(4x-2)=7x-10 | | 12+r=3/4(48) | | 2a-6=4a-24 | | 3x+15=1.50 | | (2-3x)(2-1x)=0 | | -19+2x=3x+11 | | 42=x/5+7 | | -2(-2.2+-0.6y)+y=0 | | b=51/3 | | -9=9y+68 | | 6x+4/7=6x-3/14 | | 9(3x-5)=9(3x+5 | | 18-3b=2 | | 4x+5+x=85 | | -8x-120=62-15x | | 1+v/8=2 | | -8+x|7=16 | | 11/12x1/3= | | 6c+2=2c-6 | | 3+x=5.5+2/9x | | -8-120=62-15x | | 4t+16=t2-2t | | 18-6x=-3(1+1x) | | 6c+2=4c | | 27x-40=27x40 | | 1w÷2.5=12 | | 24=4.6+0.2z | | (3x-3)(7x+2)=0 | | 4x-16=2x-4=3x-2 | | 46+w=20 | | 1=8n+3 |

Equations solver categories