If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4x-2)/(6-3x)=6-2x
We move all terms to the left:
(4x-2)/(6-3x)-(6-2x)=0
Domain of the equation: (6-3x)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
-3x!=-6
x!=-6/-3
x!=+2
x∈R
(4x-2)/(-3x+6)-(-2x+6)=0
We get rid of parentheses
(4x-2)/(-3x+6)+2x-6=0
We multiply all the terms by the denominator
(4x-2)+2x*(-3x+6)-6*(-3x+6)=0
We multiply parentheses
-6x^2+(4x-2)+12x+18x-36=0
We get rid of parentheses
-6x^2+4x+12x+18x-2-36=0
We add all the numbers together, and all the variables
-6x^2+34x-38=0
a = -6; b = 34; c = -38;
Δ = b2-4ac
Δ = 342-4·(-6)·(-38)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{61}}{2*-6}=\frac{-34-2\sqrt{61}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{61}}{2*-6}=\frac{-34+2\sqrt{61}}{-12} $
| 54=•x | | 43m+37=51+2m | | 5(7)^-6x=7 | | 9m +32 =73 | | 9/m+3/2=7/3 | | 2x-7=3(2x+3) | | a=10a-8 | | 7(-2x+5)=154 | | 2^y×9=9 | | 36=6q | | 9m+32=73 | | h3+ 12=11 | | (3a+4)+(8a-28)=108 | | 9/m +3/2 =37 | | 5q=31;13 | | 5c+10=35 | | 15y=-10y | | 4.43(f+12)+-19=-14.57 | | 6/4=y/18 | | x+2=2(2–3x) | | x+2=2×(2–3x) | | (3)⅔y-(3)9=(3)2y+(3)3 | | -11=v+7 | | 6/4=18/y | | F(x)=2x-6x=8 | | |3x-12|=27 | | x2-14x-5=0 | | -1/5=w-4/5= | | 0=-2(v+3) | | 7−4.9t=15+7.6t | | 45/3=g/240 | | 4·(2x+2)=1–5x |