(4x-1)(x+5)=2x+10(2x+7)

Simple and best practice solution for (4x-1)(x+5)=2x+10(2x+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-1)(x+5)=2x+10(2x+7) equation:



(4x-1)(x+5)=2x+10(2x+7)
We move all terms to the left:
(4x-1)(x+5)-(2x+10(2x+7))=0
We multiply parentheses ..
(+4x^2+20x-1x-5)-(2x+10(2x+7))=0
We calculate terms in parentheses: -(2x+10(2x+7)), so:
2x+10(2x+7)
We multiply parentheses
2x+20x+70
We add all the numbers together, and all the variables
22x+70
Back to the equation:
-(22x+70)
We get rid of parentheses
4x^2+20x-1x-22x-5-70=0
We add all the numbers together, and all the variables
4x^2-3x-75=0
a = 4; b = -3; c = -75;
Δ = b2-4ac
Δ = -32-4·4·(-75)
Δ = 1209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{1209}}{2*4}=\frac{3-\sqrt{1209}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{1209}}{2*4}=\frac{3+\sqrt{1209}}{8} $

See similar equations:

| 13+x=77 | | 3(a+22)=2(6a+15) | | 3=4n+2 | | 192=6(5n-8) | | 176=9x+41 | | 1+a=3+2a | | y=(X+6) | | 2x-8+6=7+x | | 6=x/2+10 | | 20x-2+12x+30=180 | | 6786x-2964=78(87x-38) | | −8=−r | | a=2+4a+8 | | x/3=-46 | | 3+3x=38 | | -11f=8-2f-8f | | -35=86-11x | | Y=-2(x+4)(-6,-3) | | 1+4x=25+2x | | C(2)=35h+35 | | 30+3x=-7 | | 3m-3=2-2m | | -28+3x=-82 | | 15/4x-2=7/2x/13/4 | | 4,648x-1743=83(56x-21) | | 6+(x+20)=29 | | 59+x-3=180 | | k-26+56=180 | | (x+2)^2+10=59 | | -3(6q-5)-8=97 | | 112+2x+4=180 | | 8x+8=116 |

Equations solver categories