(4x-1)(2+x)-(3-x)(4x-1)=0

Simple and best practice solution for (4x-1)(2+x)-(3-x)(4x-1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x-1)(2+x)-(3-x)(4x-1)=0 equation:



(4x-1)(2+x)-(3-x)(4x-1)=0
We add all the numbers together, and all the variables
(4x-1)(x+2)-(-1x+3)(4x-1)=0
We multiply parentheses ..
(+4x^2+8x-1x-2)-(-1x+3)(4x-1)=0
We get rid of parentheses
4x^2+8x-1x-(-1x+3)(4x-1)-2=0
We multiply parentheses ..
4x^2-(-4x^2+x+12x-3)+8x-1x-2=0
We add all the numbers together, and all the variables
4x^2-(-4x^2+x+12x-3)+7x-2=0
We get rid of parentheses
4x^2+4x^2-x-12x+7x+3-2=0
We add all the numbers together, and all the variables
8x^2-6x+1=0
a = 8; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·8·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2}{2*8}=\frac{4}{16} =1/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2}{2*8}=\frac{8}{16} =1/2 $

See similar equations:

| 4x+6=4×+6 | | 19/7=76/x | | -9z+10=-10z | | m-1/2/1+1/2m=1 | | 45=10+13+c | | -8-6c=-7c | | 4(2x+4)=12x+15-4x+1 | | 35=-5(2x=5) | | 43.25=9g+3.56 | | 8+4f=2+5f | | C=38.49+25m | | 5x+40x-7=9(5x+6) | | 5x+x=246 | | 15-½b=-3 | | 5x+23=9x+31 | | 5d2+2=3.8 | | 4x+21x-7=5(5x+4) | | x²-4X*4=0 | | 5x-4(7x-10)=-167 | | 21x+11+30x+16=180 | | ⅔w-2=10 | | 10p+9-11-p=-2(2p+4)-3(2p+4)-3(2p-2 | | -8x-19=5x+7 | | b+4=1b+4 | | 5+16b2=117 | | -2x+21=2x+9 | | 2y−1=1 | | 7x+25x-16=70 | | 4x+3=8x-4x+3 | | b=b+1 | | 4(3x+4)+96=17x+14-5x+98 | | .15x+2980=x |

Equations solver categories