(4x+l)(3x+2)(2x)=96

Simple and best practice solution for (4x+l)(3x+2)(2x)=96 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+l)(3x+2)(2x)=96 equation:


Simplifying
(4x + l)(3x + 2)(2x) = 96

Reorder the terms:
(l + 4x)(3x + 2)(2x) = 96

Reorder the terms:
(l + 4x)(2 + 3x)(2x) = 96

Remove parenthesis around (2x)
(l + 4x)(2 + 3x) * 2x = 96

Reorder the terms for easier multiplication:
2x(l + 4x)(2 + 3x) = 96

Multiply (l + 4x) * (2 + 3x)
2x(l(2 + 3x) + 4x * (2 + 3x)) = 96
2x((2 * l + 3x * l) + 4x * (2 + 3x)) = 96
2x((2l + 3lx) + 4x * (2 + 3x)) = 96
2x(2l + 3lx + (2 * 4x + 3x * 4x)) = 96
2x(2l + 3lx + (8x + 12x2)) = 96
2x(2l + 3lx + 8x + 12x2) = 96
(2l * 2x + 3lx * 2x + 8x * 2x + 12x2 * 2x) = 96
(4lx + 6lx2 + 16x2 + 24x3) = 96

Solving
4lx + 6lx2 + 16x2 + 24x3 = 96

Solving for variable 'l'.

Move all terms containing l to the left, all other terms to the right.

Add '-16x2' to each side of the equation.
4lx + 6lx2 + 16x2 + -16x2 + 24x3 = 96 + -16x2

Combine like terms: 16x2 + -16x2 = 0
4lx + 6lx2 + 0 + 24x3 = 96 + -16x2
4lx + 6lx2 + 24x3 = 96 + -16x2

Add '-24x3' to each side of the equation.
4lx + 6lx2 + 24x3 + -24x3 = 96 + -16x2 + -24x3

Combine like terms: 24x3 + -24x3 = 0
4lx + 6lx2 + 0 = 96 + -16x2 + -24x3
4lx + 6lx2 = 96 + -16x2 + -24x3

Reorder the terms:
-96 + 4lx + 6lx2 + 16x2 + 24x3 = 96 + -16x2 + -24x3 + -96 + 16x2 + 24x3

Reorder the terms:
-96 + 4lx + 6lx2 + 16x2 + 24x3 = 96 + -96 + -16x2 + 16x2 + -24x3 + 24x3

Combine like terms: 96 + -96 = 0
-96 + 4lx + 6lx2 + 16x2 + 24x3 = 0 + -16x2 + 16x2 + -24x3 + 24x3
-96 + 4lx + 6lx2 + 16x2 + 24x3 = -16x2 + 16x2 + -24x3 + 24x3

Combine like terms: -16x2 + 16x2 = 0
-96 + 4lx + 6lx2 + 16x2 + 24x3 = 0 + -24x3 + 24x3
-96 + 4lx + 6lx2 + 16x2 + 24x3 = -24x3 + 24x3

Combine like terms: -24x3 + 24x3 = 0
-96 + 4lx + 6lx2 + 16x2 + 24x3 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-48 + 2lx + 3lx2 + 8x2 + 12x3) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-48 + 2lx + 3lx2 + 8x2 + 12x3)' equal to zero and attempt to solve: Simplifying -48 + 2lx + 3lx2 + 8x2 + 12x3 = 0 Solving -48 + 2lx + 3lx2 + 8x2 + 12x3 = 0 Move all terms containing l to the left, all other terms to the right. Add '48' to each side of the equation. -48 + 2lx + 3lx2 + 8x2 + 48 + 12x3 = 0 + 48 Reorder the terms: -48 + 48 + 2lx + 3lx2 + 8x2 + 12x3 = 0 + 48 Combine like terms: -48 + 48 = 0 0 + 2lx + 3lx2 + 8x2 + 12x3 = 0 + 48 2lx + 3lx2 + 8x2 + 12x3 = 0 + 48 Combine like terms: 0 + 48 = 48 2lx + 3lx2 + 8x2 + 12x3 = 48 Add '-8x2' to each side of the equation. 2lx + 3lx2 + 8x2 + -8x2 + 12x3 = 48 + -8x2 Combine like terms: 8x2 + -8x2 = 0 2lx + 3lx2 + 0 + 12x3 = 48 + -8x2 2lx + 3lx2 + 12x3 = 48 + -8x2 Add '-12x3' to each side of the equation. 2lx + 3lx2 + 12x3 + -12x3 = 48 + -8x2 + -12x3 Combine like terms: 12x3 + -12x3 = 0 2lx + 3lx2 + 0 = 48 + -8x2 + -12x3 2lx + 3lx2 = 48 + -8x2 + -12x3 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| 5(3x+9)-2x=14x-2(x-5) | | x(2x-100)=30000 | | 4(2y+-8)= | | -5z=6-4z | | -3-9j=-10j | | x-2x-5=10 | | 3n^2-n-24=0 | | 31.5+0.12= | | 4(2h-5)=12h | | -9v-8=-10v | | Sin(x-10)=cos(3x+8) | | -4x-4=6+3x | | 5(5c-1)-4=23c+7 | | 9x+81=180 | | 8b^2+80b=-128 | | 4=8k+1 | | 2(3)-2(4c)+7=0 | | 6m+2.3=-9 | | 3m+2.3=-12.7 | | 7n+4+13n=46 | | 2x^2-7x+8= | | 5x^2-9x+7= | | -x+15y=13 | | 17x-115-67=90 | | 47+3y-18=13y-13-4y | | 4x+10-2=5x+16 | | 4x-2=-19 | | 0.8*0.9= | | 22m^2+(-m^2)= | | 0.6x+0.4*4=y | | 0.2*0.6= | | x+22+4x=-31-4x-37 |

Equations solver categories