(4x+8)+(x2)=180

Simple and best practice solution for (4x+8)+(x2)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+8)+(x2)=180 equation:



(4x+8)+(x2)=180
We move all terms to the left:
(4x+8)+(x2)-(180)=0
We add all the numbers together, and all the variables
x^2+(4x+8)-180=0
We get rid of parentheses
x^2+4x+8-180=0
We add all the numbers together, and all the variables
x^2+4x-172=0
a = 1; b = 4; c = -172;
Δ = b2-4ac
Δ = 42-4·1·(-172)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{11}}{2*1}=\frac{-4-8\sqrt{11}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{11}}{2*1}=\frac{-4+8\sqrt{11}}{2} $

See similar equations:

| 10^x=95 | | x^2=24-6x | | 24x=750 | | 5t=25t^ | | 8/5=3x/97 | | 16^5x=15^x-9 | | 6x+1-4x=5x-8 | | 10x-x^2=20 | | -5x^2-6x-10=0 | | 180=6x+10°+4x-5° | | 7x-103=113-5x | | 8y−​(3y−21​)=46 | | (6y-113)+61=180 | | 6y-113+61=180 | | (x-1)-2=5 | | 3^(1-2x)=7^(x) | | 5*3^(2x-1)+7=42 | | 2+3(2x-1)=–6x+5 | | X^4-48x^2-x+580=0 | | 24–y=14,y | | 9(w-9)-2=-7+6(w-8) | | -1(50+5x)=-60 | | x+15=20,x | | 1.87=x/(1.41-x) | | 2-3x=45(2) | | k²+14k+49=0 | | −2x+4−7x=−4+5−9x | | 2x+15=45,x=15 | | 3(x-2)-2x+3=3(x−2)−2x+3=-12−12 | | 4w+6=6w—3 | | 3(10x+4)=132 | | 6-4(1+3n)=86 |

Equations solver categories