(4x+4)-(3x-1)=4x+(5x-3)x=

Simple and best practice solution for (4x+4)-(3x-1)=4x+(5x-3)x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+4)-(3x-1)=4x+(5x-3)x= equation:



(4x+4)-(3x-1)=4x+(5x-3)x=
We move all terms to the left:
(4x+4)-(3x-1)-(4x+(5x-3)x)=0
We get rid of parentheses
4x-3x-(4x+(5x-3)x)+4+1=0
We calculate terms in parentheses: -(4x+(5x-3)x), so:
4x+(5x-3)x
We multiply parentheses
5x^2+4x-3x
We add all the numbers together, and all the variables
5x^2+x
Back to the equation:
-(5x^2+x)
We add all the numbers together, and all the variables
x-(5x^2+x)+5=0
We get rid of parentheses
-5x^2+x-x+5=0
We add all the numbers together, and all the variables
-5x^2+5=0
a = -5; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-5)·5
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*-5}=\frac{-10}{-10} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*-5}=\frac{10}{-10} =-1 $

See similar equations:

| 7(m+2.1)=76.3 | | m+10=-80 | | (4x+251)=(-2x) | | 1xx=100 | | a-19=30 | | 2.5x+14=3x+9 | | 2((x-6)+6=4x-2 | | 2(x-5)+3x-15=35 | | E^x=4.83 | | 110-k=10 | | n−–6=19 | | 12c+6c=5550 | | 110−k=10 | | 14(x+5)=190 | | −3y=24 | | t-2.8=0 | | 2x(x+6)+10=0 | | (9-3)x=1+x | | x+70=190 | | -9=q=+6 | | 5-(x+7)=2(x+5) | | 5(x+2)-2x=1 | | t-2.6=0 | | 17=6+m | | 5x+14=190 | | 5x-1.5=1 | | 4.03x=2.1 | | r÷8=8 | | 18=n+14 | | 15^x2=110 | | 25=7.5-x | | 12y=-180 |

Equations solver categories