(4x+4)-(3x-1)=4x+(5x-3)x

Simple and best practice solution for (4x+4)-(3x-1)=4x+(5x-3)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+4)-(3x-1)=4x+(5x-3)x equation:



(4x+4)-(3x-1)=4x+(5x-3)x
We move all terms to the left:
(4x+4)-(3x-1)-(4x+(5x-3)x)=0
We get rid of parentheses
4x-3x-(4x+(5x-3)x)+4+1=0
We calculate terms in parentheses: -(4x+(5x-3)x), so:
4x+(5x-3)x
We multiply parentheses
5x^2+4x-3x
We add all the numbers together, and all the variables
5x^2+x
Back to the equation:
-(5x^2+x)
We add all the numbers together, and all the variables
x-(5x^2+x)+5=0
We get rid of parentheses
-5x^2+x-x+5=0
We add all the numbers together, and all the variables
-5x^2+5=0
a = -5; b = 0; c = +5;
Δ = b2-4ac
Δ = 02-4·(-5)·5
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10}{2*-5}=\frac{-10}{-10} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10}{2*-5}=\frac{10}{-10} =-1 $

See similar equations:

| 2(x+5)-x=2(x-6) | | (4x+6)-(2x+6)=6x-8x | | 3^2x+8*3^x-3=0 | | 54+162+x=180 | | -3x+8=-x+8+2x | | 7-3x=-8-8x= | | 8-2x=4x-4= | | 8x+14+69+49=180 | | 6x=24-2x= | | 8x=14+x= | | -36h=-72 | | 5x=3x-6= | | x-9+7x=55= | | 8x-5-4x=15= | | p/8=+7 | | C=4(3h+5 | | 3x+7+2x=22= | | 34=q+16 | | 6(r+8)=24 | | 3g^2-20+12=0 | | -3q=-21 | | (3x^2-4)(2x^2-x)=0 | | 8=1/10s | | 1/7t=+8 | | F⋅x=3⋅x2+-(12⋅x)+9 | | 7t=+28 | | 108/r=9 | | 9=1/10y | | 3(2-x)+2=3-1/2(x+1) | | 4^x+20=52 | | b(4)=-24 | | 5=-1/8w |

Equations solver categories