(4x+3)/5x=1.2-(3/x)

Simple and best practice solution for (4x+3)/5x=1.2-(3/x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+3)/5x=1.2-(3/x) equation:



(4x+3)/5x=1.2-(3/x)
We move all terms to the left:
(4x+3)/5x-(1.2-(3/x))=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: x))!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(4x+3)/5x-(1.2-(+3/x))=0
We calculate fractions
(4x+3)*x))/5x^2+(-(1.2-(+3*5x)/5x^2=0
We calculate fractions
((4x+3)*x))*5x^2)/(5x^2+(-(1.2*5x^2)+(-(+3*5x)*5x^2)/(5x^2+(-(1.2*5x^2)=0
We calculate terms in parentheses: +(-(+3*5x)*5x^2)/(5x^2+(-(1.2*5x^2), so:
-(+3*5x)*5x^2)/(5x^2+(-(1.2*5x^2
We multiply all the terms by the denominator
-(+3*5x)*5x^2)+((-(1.2*5x^2)*(5x^2
Back to the equation:
+(-(+3*5x)*5x^2)+((-(1.2*5x^2)*(5x^2)
We get rid of parentheses
((4x+3)*x))*5x^2)/(5x^2+(-1.2*5x^2+(-(+3*5x)*5x^2)+((-(1.2*5x^2)*5x^2=0
We multiply all the terms by the denominator
((4x+3)*x))*5x^2)-(1.2*5x^2)*(5x^2+(+((-(+3*5x)*5x^2))*(5x^2+(+(((-(1.2*5x^2)*5x^2)*(5x^2+(=0

See similar equations:

| 7n^+52n-32=0 | | 3y-12+y=12+4y | | 133/57=76/x | | d=-3+2/3 | | 4x+1x+6=180 | | 4x+3/5x=6/5-3/x | | 144=-7k-18 | | (4x+3)/5x=(6/5)-(3/x) | | 7(m+5)=-4(1+m)+6 | | 22/8=k/4 | | 11/6=y/12 | | 30=-8v+6(v+3) | | 9(x+1)=-36 | | 22/8=l/4 | | y=6(-1)+3 | | 4x+6x+3=-17 | | -4(x+3)-45=5-38 | | 2(4x+4)=40 | | 4n−8=−12 | | 2x-4(x-2)=4+3x-23 | | 2x+9=-2x+3+4+x | | 6(2x+1)=10+4 | | 2y+-4=16 | | v+5v=6 | | v+2/3=-1/5 | | 3x-60=2x+10 | | 47x=21-2+4 | | 15x+32=10x+23 | | y/4=y-3 | | (6x/12)+(6x/18)=60 | | 3x-60+2x+10=180 | | -2x-8=2x-4 |

Equations solver categories