(4x+1)(x+6)=(x-2)(3x-4)

Simple and best practice solution for (4x+1)(x+6)=(x-2)(3x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x+1)(x+6)=(x-2)(3x-4) equation:



(4x+1)(x+6)=(x-2)(3x-4)
We move all terms to the left:
(4x+1)(x+6)-((x-2)(3x-4))=0
We multiply parentheses ..
(+4x^2+24x+x+6)-((x-2)(3x-4))=0
We calculate terms in parentheses: -((x-2)(3x-4)), so:
(x-2)(3x-4)
We multiply parentheses ..
(+3x^2-4x-6x+8)
We get rid of parentheses
3x^2-4x-6x+8
We add all the numbers together, and all the variables
3x^2-10x+8
Back to the equation:
-(3x^2-10x+8)
We get rid of parentheses
4x^2-3x^2+24x+x+10x+6-8=0
We add all the numbers together, and all the variables
x^2+35x-2=0
a = 1; b = 35; c = -2;
Δ = b2-4ac
Δ = 352-4·1·(-2)
Δ = 1233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1233}=\sqrt{9*137}=\sqrt{9}*\sqrt{137}=3\sqrt{137}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-3\sqrt{137}}{2*1}=\frac{-35-3\sqrt{137}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+3\sqrt{137}}{2*1}=\frac{-35+3\sqrt{137}}{2} $

See similar equations:

| 18=-6x+4 | | 11n-1(-6)=13n-3 | | 11x-11=7x-7 | | h·4.7=30.55 | | -35=4v-7 | | (x-2)(3x-4)=0 | | -7.1=y/7+4.1 | | a-0.05=140 | | 3298444473+8738426n=5 | | 11x-2x+62=11x+28 | | 12x-1=8x+1 | | x2=42 | | -a/4-5/6=-1/2 | | 0.7t=-t-5.1 | | 2(x+6)=3x+12 | | x-5=2.5 | | x(-)5=2.5 | | 2x+9=8x-6 | | -x-2=-4x-1 | | 15-(3-4n)=4(2n-1 | | 0.5-5x=0.6 | | -x-2=-4x | | -40-8n=3(-6+2n)+8n | | 6(x-4)+x=4 | | 12x-77=103 | | 2+3=4b | | -9=-9(q−97) | | 13.79+0.08(x+3)=14,54-0.13 | | -54=9b | | 6n+3n=-9 | | 4.5n-8=6(2.5n-12.35) | | (1)/(3)x+(1)/(2)x+6=11 |

Equations solver categories