If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4q+5q)(4q+5q)=0
We add all the numbers together, and all the variables
(+9q)(+9q)=0
We multiply parentheses ..
(+81q^2)=0
We get rid of parentheses
81q^2=0
a = 81; b = 0; c = 0;
Δ = b2-4ac
Δ = 02-4·81·0
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$q=\frac{-b}{2a}=\frac{0}{162}=0$
| 4x^2+8x=6x-4 | | .10z-5+3z=8-z | | 3/4=p+2/12 | | 20-2u=3u | | 3x+6=3x+-6 | | -2(-3n+4)-2n=-2(5)+5(-2n)+12n | | x/6=x-2/3 | | 180=2x-4 | | x/6=(x-2)/5 | | 6/(4/x)=9 | | X^2=40x | | 16f+24=8(2f+13) | | 2x-3+x+10=180 | | -3(x+6)+10=89 | | (x+2)/5=(x-2)/3 | | 2(3.50+x)+12.00=29.00 | | -10-9x=-8 | | 10^2x=13 | | x+2/5=x-2/3 | | x+2-6=-14 | | 3x+7=(x+1) | | |4x-14|=30 | | x^2−56=0 | | 2x^2+10x+12=2x^2-108 | | 180=5x+4x+10 | | x2−56=0 | | x+2-6=14 | | 4*x-4*x=0 | | x2+10x=0 | | -p=p-8 | | 3=-4/y-4 | | 3x^2+120x-1600=0 |