(4/9)x+(1/5)x=87

Simple and best practice solution for (4/9)x+(1/5)x=87 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/9)x+(1/5)x=87 equation:



(4/9)x+(1/5)x=87
We move all terms to the left:
(4/9)x+(1/5)x-(87)=0
Domain of the equation: 9)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+4/9)x+(+1/5)x-87=0
We multiply parentheses
4x^2+x^2-87=0
We add all the numbers together, and all the variables
5x^2-87=0
a = 5; b = 0; c = -87;
Δ = b2-4ac
Δ = 02-4·5·(-87)
Δ = 1740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1740}=\sqrt{4*435}=\sqrt{4}*\sqrt{435}=2\sqrt{435}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{435}}{2*5}=\frac{0-2\sqrt{435}}{10} =-\frac{2\sqrt{435}}{10} =-\frac{\sqrt{435}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{435}}{2*5}=\frac{0+2\sqrt{435}}{10} =\frac{2\sqrt{435}}{10} =\frac{\sqrt{435}}{5} $

See similar equations:

| –7d=14 | | 15+s=22 | | 10(×+1)=5(2x+2) | | –2(w−2)=–10 | | 0.8x-11=6(x+3) | | 1=b/4 | | (2x/3)+8=12;xϵW | | x^2+2x-1,718=0 | | 4.2=q+8.6/3 | | 12d=192 | | 11x²+7×=106 | | (5x+62)=3x+47 | | 0.5(x-0.4)=0.3 | | -2x-23=-170 | | 3x+184x+15=180 | | 7y+3-5y=15 | | 2t–17+3t+t-1=180 | | 23=x3+26 | | 1.25(x+2.5)=-3.125 | | 2u=8+10u | | (20+x)*23=215 | | -44=-7p+2p-9 | | -44=7p+2p-9 | | 2+p/2=0 | | 72=2+7(w+7) | | 4(1-3a)=-20 | | 7(y+11)=7 | | 3(a+2)=3a+7 | | n/8+1=0 | | 15=30(.5)^.2t | | -30=10v+5v | | 1.33(x-0.8)=-13.067 |

Equations solver categories