(4/9)(x+13)=8

Simple and best practice solution for (4/9)(x+13)=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/9)(x+13)=8 equation:



(4/9)(x+13)=8
We move all terms to the left:
(4/9)(x+13)-(8)=0
Domain of the equation: 9)(x+13)!=0
x∈R
We add all the numbers together, and all the variables
(+4/9)(x+13)-8=0
We multiply parentheses ..
(+4x^2+4/9*13)-8=0
We multiply all the terms by the denominator
(+4x^2+4-8*9*13)=0
We get rid of parentheses
4x^2+4-8*9*13=0
We add all the numbers together, and all the variables
4x^2-932=0
a = 4; b = 0; c = -932;
Δ = b2-4ac
Δ = 02-4·4·(-932)
Δ = 14912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14912}=\sqrt{64*233}=\sqrt{64}*\sqrt{233}=8\sqrt{233}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{233}}{2*4}=\frac{0-8\sqrt{233}}{8} =-\frac{8\sqrt{233}}{8} =-\sqrt{233} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{233}}{2*4}=\frac{0+8\sqrt{233}}{8} =\frac{8\sqrt{233}}{8} =\sqrt{233} $

See similar equations:

| 6x-7+4x-10=83 | | j+28.6=43 | | 7r=43 | | 10.00=7.39(1.04)^t | | 20+4x4=0 | | 0.5(2x+5)=5x-20 | | -59=1.8c | | 28=2x+4+4x | | 16x-12=40+8x | | -8x+2=4x+38 | | 6=v+13/9 | | 87x=1044 | | 5x+(2x-3)=2x+7 | | 15x+5=70 | | 14x+9=20x+7 | | u-1/2=-2/5 | | (u-14)+(2u-17)+31=180 | | s−1=18.6 | | 2(8x-6)=4(10+2x) | | 2(8x-6)=4(10+2x | | 88=8t+9 | | 2(x-5)^2+1=37 | | 3b=14+b | | y-4.56=1.93 | | 22z=11 | | x+1.3=3.89 | | 3x+8=–16 | | (Z-1)z+8=14 | | 4d+21=89 | | 74-7x=2x-57 | | (7b-20)+(2b-10)+(2b-10)=180 | | x=3E-08 |

Equations solver categories