(4/5)w=2

Simple and best practice solution for (4/5)w=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/5)w=2 equation:



(4/5)w=2
We move all terms to the left:
(4/5)w-(2)=0
Domain of the equation: 5)w!=0
w!=0/1
w!=0
w∈R
We add all the numbers together, and all the variables
(+4/5)w-2=0
We multiply parentheses
4w^2-2=0
a = 4; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·4·(-2)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*4}=\frac{0-4\sqrt{2}}{8} =-\frac{4\sqrt{2}}{8} =-\frac{\sqrt{2}}{2} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*4}=\frac{0+4\sqrt{2}}{8} =\frac{4\sqrt{2}}{8} =\frac{\sqrt{2}}{2} $

See similar equations:

| 7.6x-5.8=55 | | 5z^2-27z-18=0 | | 1/2x^2+6x-140=0 | | 25^x-3*5^x+2=0 | | (3x-7)=(2x-11) | | V=235(1.15)t | | 12x=-x+8 | | x+x+3=2x-5 | | 20=w/5+16 | | 3x+5=-7/9 | | u/3+13=40 | | -7(k+9=9(k-5)-14 | | 5(3(x+4)-2(1-x)-x-25=-14x+75 | | 32=4v-12 | | 7/12x+5=x | | 5(3(x+4-2(1-x))-x-25=14x+75 | | 38=0.4z | | 400x=100(5x-2) | | (7/12x)-(x)=-5 | | 4x^2+16x+8=-7 | | 4x²+7=0 | | x+3=`10 | | 45x1.99=68.88 | | x+11=3x-25 | | 6(2x)−3=22x+2 | | |x+8|+4=13 | | 0=-(x+4)(3x-1) | | 5-3x=3.5x | | Z×z+3×z/4-1=0 | | 89=a*93 | | Z*z+3*z/4-1=0 | | 6(3x+2)=-3(x+11) |

Equations solver categories