If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4/5)(20x+5)=16x-2
We move all terms to the left:
(4/5)(20x+5)-(16x-2)=0
Domain of the equation: 5)(20x+5)!=0We add all the numbers together, and all the variables
x∈R
(+4/5)(20x+5)-(16x-2)=0
We get rid of parentheses
(+4/5)(20x+5)-16x+2=0
We multiply parentheses ..
(+80x^2+4/5*5)-16x+2=0
We multiply all the terms by the denominator
(+80x^2+4-16x*5*5)+2*5*5)=0
We add all the numbers together, and all the variables
(+80x^2+4-16x*5*5)=0
We get rid of parentheses
80x^2-16x*5*5+4=0
Wy multiply elements
80x^2-400x*5+4=0
Wy multiply elements
80x^2-2000x+4=0
a = 80; b = -2000; c = +4;
Δ = b2-4ac
Δ = -20002-4·80·4
Δ = 3998720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3998720}=\sqrt{1024*3905}=\sqrt{1024}*\sqrt{3905}=32\sqrt{3905}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2000)-32\sqrt{3905}}{2*80}=\frac{2000-32\sqrt{3905}}{160} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2000)+32\sqrt{3905}}{2*80}=\frac{2000+32\sqrt{3905}}{160} $
| z+7=z+6 | | h/5-39=-36 | | -9w-22=-2(w-3) | | –5(–4+2j)= | | -6b+12=-8b+24 | | -8(1-2r)=104 | | 7(n-81)=49 | | 28=n-(-9) | | -2(w+9)=-6w-2 | | d9=2 | | 11/10=n/4 | | -15/x-2=-9/x | | 28=1/3g+26 | | 15x+180=50x+5 | | 25x+80=45x | | (2x-2)+(1x+5)=180 | | -5x-15=-3(x+3) | | 3(x+5)-7=6x-3(-3+x) | | 2n+3=4(n-6)+8 | | -3(a+3)=-21-7a | | 4x+8+3x+4=68 | | m-4/7=9 | | 7x+8=7x-1+5x+2 | | -8+h=-10 | | 10x-12=11x-18 | | –17=u−19 | | 7/11=u/8 | | (16.3)n=22,200 | | 4x÷3-2=14 | | 50+127+91+x=360 | | 230+0.25x=442.50 | | 6x+6=6x+1 |