(4/3x)+(12x-20)=180

Simple and best practice solution for (4/3x)+(12x-20)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/3x)+(12x-20)=180 equation:



(4/3x)+(12x-20)=180
We move all terms to the left:
(4/3x)+(12x-20)-(180)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+4/3x)+(12x-20)-180=0
We get rid of parentheses
4/3x+12x-20-180=0
We multiply all the terms by the denominator
12x*3x-20*3x-180*3x+4=0
Wy multiply elements
36x^2-60x-540x+4=0
We add all the numbers together, and all the variables
36x^2-600x+4=0
a = 36; b = -600; c = +4;
Δ = b2-4ac
Δ = -6002-4·36·4
Δ = 359424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{359424}=\sqrt{9216*39}=\sqrt{9216}*\sqrt{39}=96\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-96\sqrt{39}}{2*36}=\frac{600-96\sqrt{39}}{72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+96\sqrt{39}}{2*36}=\frac{600+96\sqrt{39}}{72} $

See similar equations:

| 29(4a+2)=21 | | x=-2+100/2 | | x2=8x-48=0 | | 5+3-6x=134 | | 9000/x=25 | | 8(2n+3)=8(4n+3)+3 | | 2y-4/y+7=1/3 | | 5x+5x-5=55 | | 71x-21=71x-21 | | -3(x-4)-6=6 | | 6(x+2)=5(x-8) | | 54=-2x+22 | | 13=-16t+416t | | 70+55+5x+10=180 | | 8112=-16t+416t+0 | | 42+5x-6=9x-4 | | 8112=-16t^2+416t | | 70+10+5x=14x+8 | | 70+10+5x=14+8 | | 76x-1+41+64=180 | | 9x+7+20+90=180 | | 8x-8+6x-11=135 | | 7x+7+5x+15=130 | | 18x-24=2x+4 | | 17k−11k=12 | | 5x+x=16-2x | | 5x+2=-7x+14 | | 8u+8=5u−10 | | 0.13x=2.) | | (x+84)+(3x)=180 | | 7x+70+75=180 | | 20=0.25x+8.50 |

Equations solver categories