(4/3)x+3=23/3

Simple and best practice solution for (4/3)x+3=23/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4/3)x+3=23/3 equation:



(4/3)x+3=23/3
We move all terms to the left:
(4/3)x+3-(23/3)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+4/3)x+3-(+23/3)=0
We multiply parentheses
4x^2+3-(+23/3)=0
We get rid of parentheses
4x^2+3-23/3=0
We multiply all the terms by the denominator
4x^2*3-23+3*3=0
We add all the numbers together, and all the variables
4x^2*3-14=0
Wy multiply elements
12x^2-14=0
a = 12; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·12·(-14)
Δ = 672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{672}=\sqrt{16*42}=\sqrt{16}*\sqrt{42}=4\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{42}}{2*12}=\frac{0-4\sqrt{42}}{24} =-\frac{4\sqrt{42}}{24} =-\frac{\sqrt{42}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{42}}{2*12}=\frac{0+4\sqrt{42}}{24} =\frac{4\sqrt{42}}{24} =\frac{\sqrt{42}}{6} $

See similar equations:

| −4=  c−3 | | 5z-12=25 | | 3.83=2.4/x | | 7y=350 | | 3^4x+8=17 | | X2-12-60=-y2-4y | | 3a+10+a+15=125 | | -x-12(3+5x)-1-2(19+x)=1009 | | X2-60=-y2-4y | | 100+10x=150 | | (7x-3)(2x+1)=(7x-3) | | 85.6+0.6×m=54.1+1.5×m | | -5=10+x/3 | | 2(k+8)=18 | | -27=-3x-3 | | 2x-306=802 | | (x+1)+(x+1)=36 | | 2x+-17=-10 | | 2x-22+86+7x+3=180 | | (6+2x)(8+2x)=48 | | 0.12*x=0.6 | | 3(f-7)+1=7 | | 30-x=57 | | F(5)=25x+200 | | 0.6×m=54.1(1.5m) | | F(3)=25x+300 | | 4xx3xx=1 | | -0;.8x=4.8 | | 9x+6=204 | | 2x+15=4x-19 | | 2x+15=4×-19 | | 10=r-969/2 |

Equations solver categories