If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4/15)m+(1/5)=1
We move all terms to the left:
(4/15)m+(1/5)-(1)=0
Domain of the equation: 15)m!=0determiningTheFunctionDomain (4/15)m-1+(1/5)=0
m!=0/1
m!=0
m∈R
We add all the numbers together, and all the variables
(+4/15)m-1+(+1/5)=0
We multiply parentheses
4m^2-1+(+1/5)=0
We get rid of parentheses
4m^2-1+1/5=0
We multiply all the terms by the denominator
4m^2*5+1-1*5=0
We add all the numbers together, and all the variables
4m^2*5-4=0
Wy multiply elements
20m^2-4=0
a = 20; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·20·(-4)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*20}=\frac{0-8\sqrt{5}}{40} =-\frac{8\sqrt{5}}{40} =-\frac{\sqrt{5}}{5} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*20}=\frac{0+8\sqrt{5}}{40} =\frac{8\sqrt{5}}{40} =\frac{\sqrt{5}}{5} $
| -42+32x=18+6x | | 4x-4=4() | | 13=9+x/2 | | R(8.3)r=10.2 | | -11x-54=126-x | | -11x-54=6x+35 | | 0.5x-3=3.5x+4 | | 16x^2-7=137 | | 24+2x=5x-36 | | -2b+2=-b-2(-6-2b | | 6g-2(2-6)=4(2g-1) | | 16x^2-7=137 | | 3t+21=7t | | 2b+b-10=13 | | 30+5k+2k=100 | | -10=-10(2m–3)+7m | | 3x+2+5x+7+2x+21=180 | | 16x-16=2() | | 3•16=-9+x | | 3(m-2)=9m | | 10-6(v+1)=-94 | | 6/180=8/m | | |x-4|=15 | | -3(x-5)=8x+15-5x | | 10/6=4/s+1 | | 4-49z=0 | | 7x+5x=27 | | -2y-4y+13=7y | | 4/k+3=12/21 | | 3x+9-2x=9+4x-6 | | -39-14x=-9x+86 | | -108=-5n-6(-4n-1) |