(4+1/2x)+x=10

Simple and best practice solution for (4+1/2x)+x=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4+1/2x)+x=10 equation:



(4+1/2x)+x=10
We move all terms to the left:
(4+1/2x)+x-(10)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(1/2x+4)+x-10=0
We add all the numbers together, and all the variables
x+(1/2x+4)-10=0
We get rid of parentheses
x+1/2x+4-10=0
We multiply all the terms by the denominator
x*2x+4*2x-10*2x+1=0
Wy multiply elements
2x^2+8x-20x+1=0
We add all the numbers together, and all the variables
2x^2-12x+1=0
a = 2; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·2·1
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{34}}{2*2}=\frac{12-2\sqrt{34}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{34}}{2*2}=\frac{12+2\sqrt{34}}{4} $

See similar equations:

| 18x-7=14x-25 | | 8x-2-(7x=-9) | | 2/7x+5/7=20/21 | | 14+2x=3x-11 | | 6f+6f=5 | | 4x−1/5​=20 | | 3^(t-1)=15 | | -x+4+8x-36=-4 | | 4x−1​=20 | | 3Xx6=12X+15 | | .6/x=3 | | 11v=99 | | 2-2x÷32=16 | | 12=r-18 | | 20+3x=5x+12 | | 2-²x÷32=16 | | 13x-35+8x=28 | | x+(2/3x-5)=180 | | 3|x+4|-15=0 | | 30+48+x=180 | | 22x-10=8=12x | | 101+46+x=180 | | −17=6p−5 | | .6x/9-3=17 | | 1/3(12x+6)=6x−18 | | -4a=-45 | | f(66)= | | d-24=72 | | 10k-7=43 | | 150=g-30 | | 4-6x+42=4 | | j-5=17 |

Equations solver categories