(3z+1)(4z+1)(6z+1)(12z+1)=2zeC

Simple and best practice solution for (3z+1)(4z+1)(6z+1)(12z+1)=2zeC equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3z+1)(4z+1)(6z+1)(12z+1)=2zeC equation:


Simplifying
(3z + 1)(4z + 1)(6z + 1)(12z + 1) = 2zeC

Reorder the terms:
(1 + 3z)(4z + 1)(6z + 1)(12z + 1) = 2zeC

Reorder the terms:
(1 + 3z)(1 + 4z)(6z + 1)(12z + 1) = 2zeC

Reorder the terms:
(1 + 3z)(1 + 4z)(1 + 6z)(12z + 1) = 2zeC

Reorder the terms:
(1 + 3z)(1 + 4z)(1 + 6z)(1 + 12z) = 2zeC

Multiply (1 + 3z) * (1 + 4z)
(1(1 + 4z) + 3z * (1 + 4z))(1 + 6z)(1 + 12z) = 2zeC
((1 * 1 + 4z * 1) + 3z * (1 + 4z))(1 + 6z)(1 + 12z) = 2zeC
((1 + 4z) + 3z * (1 + 4z))(1 + 6z)(1 + 12z) = 2zeC
(1 + 4z + (1 * 3z + 4z * 3z))(1 + 6z)(1 + 12z) = 2zeC
(1 + 4z + (3z + 12z2))(1 + 6z)(1 + 12z) = 2zeC

Combine like terms: 4z + 3z = 7z
(1 + 7z + 12z2)(1 + 6z)(1 + 12z) = 2zeC

Multiply (1 + 7z + 12z2) * (1 + 6z)
(1(1 + 6z) + 7z * (1 + 6z) + 12z2 * (1 + 6z))(1 + 12z) = 2zeC
((1 * 1 + 6z * 1) + 7z * (1 + 6z) + 12z2 * (1 + 6z))(1 + 12z) = 2zeC
((1 + 6z) + 7z * (1 + 6z) + 12z2 * (1 + 6z))(1 + 12z) = 2zeC
(1 + 6z + (1 * 7z + 6z * 7z) + 12z2 * (1 + 6z))(1 + 12z) = 2zeC
(1 + 6z + (7z + 42z2) + 12z2 * (1 + 6z))(1 + 12z) = 2zeC
(1 + 6z + 7z + 42z2 + (1 * 12z2 + 6z * 12z2))(1 + 12z) = 2zeC
(1 + 6z + 7z + 42z2 + (12z2 + 72z3))(1 + 12z) = 2zeC

Combine like terms: 6z + 7z = 13z
(1 + 13z + 42z2 + 12z2 + 72z3)(1 + 12z) = 2zeC

Combine like terms: 42z2 + 12z2 = 54z2
(1 + 13z + 54z2 + 72z3)(1 + 12z) = 2zeC

Multiply (1 + 13z + 54z2 + 72z3) * (1 + 12z)
(1(1 + 12z) + 13z * (1 + 12z) + 54z2 * (1 + 12z) + 72z3 * (1 + 12z)) = 2zeC
((1 * 1 + 12z * 1) + 13z * (1 + 12z) + 54z2 * (1 + 12z) + 72z3 * (1 + 12z)) = 2zeC
((1 + 12z) + 13z * (1 + 12z) + 54z2 * (1 + 12z) + 72z3 * (1 + 12z)) = 2zeC
(1 + 12z + (1 * 13z + 12z * 13z) + 54z2 * (1 + 12z) + 72z3 * (1 + 12z)) = 2zeC
(1 + 12z + (13z + 156z2) + 54z2 * (1 + 12z) + 72z3 * (1 + 12z)) = 2zeC
(1 + 12z + 13z + 156z2 + (1 * 54z2 + 12z * 54z2) + 72z3 * (1 + 12z)) = 2zeC
(1 + 12z + 13z + 156z2 + (54z2 + 648z3) + 72z3 * (1 + 12z)) = 2zeC
(1 + 12z + 13z + 156z2 + 54z2 + 648z3 + (1 * 72z3 + 12z * 72z3)) = 2zeC
(1 + 12z + 13z + 156z2 + 54z2 + 648z3 + (72z3 + 864z4)) = 2zeC

Combine like terms: 12z + 13z = 25z
(1 + 25z + 156z2 + 54z2 + 648z3 + 72z3 + 864z4) = 2zeC

Combine like terms: 156z2 + 54z2 = 210z2
(1 + 25z + 210z2 + 648z3 + 72z3 + 864z4) = 2zeC

Combine like terms: 648z3 + 72z3 = 720z3
(1 + 25z + 210z2 + 720z3 + 864z4) = 2zeC

Solving
1 + 25z + 210z2 + 720z3 + 864z4 = 2ezC

Solving for variable 'z'.

Reorder the terms:
1 + -2ezC + 25z + 210z2 + 720z3 + 864z4 = 2ezC + -2ezC

Combine like terms: 2ezC + -2ezC = 0
1 + -2ezC + 25z + 210z2 + 720z3 + 864z4 = 0

The solution to this equation could not be determined.

See similar equations:

| 90+-28+X=190 | | x^2+7y^2=10 | | 5x-52=3x+10 | | 1*x+2*(26-x)=37 | | X*20=1000 | | 37-x+(37-2x)=26 | | (3x+4)(-2x+5)=0 | | =80-3Q | | (x+3)(y+1)=40 | | 6x^3-kx^2-6x+8=0 | | 11(5)+u+17=5+7u-23 | | 20*9=8x*8 | | -4-9=sqrt(2p+56) | | 7v=12v-25 | | a(6m+7)=b-24m | | (x+5)4=52 | | t+(2t+5)-5(1-2t)=2(3+4t)-3(t-4) | | 24+2a-5=10a-11-2a | | 53+8x=-5 | | 35-3*x=3+x | | a+20+3a=-12-3a-17 | | 53.4=2(3.14) | | 9x^2-3(a+b)x+ab=0 | | -17a-20=-14a+100 | | -17a-20=-14+100 | | 16x+12x=(4x-6) | | x+(x+10)+7=48 | | (10u+v)(10u-v)= | | 20y+7+4y= | | x+(x+10)+x+(10+7)=48 | | 21=u+16 | | 18x^2-56x+56=0 |

Equations solver categories