(3y-6)/2y=(17/3)

Simple and best practice solution for (3y-6)/2y=(17/3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3y-6)/2y=(17/3) equation:


y in (-oo:+oo)

y*((3*y-6)/2) = 17/3 // - 17/3

y*((3*y-6)/2)-(17/3) = 0

y*((3*y-6)/2)-17/3 = 0

(y*(3*y-6))/2-17/3 = 0

(3*y*(3*y-6))/(2*3)+(-17*2)/(2*3) = 0

3*y*(3*y-6)-17*2 = 0

9*y^2-18*y-34 = 0

9*y^2-18*y-34 = 0

9*y^2-18*y-34 = 0

DELTA = (-18)^2-(-34*4*9)

DELTA = 1548

DELTA > 0

y = (1548^(1/2)+18)/(2*9) or y = (18-1548^(1/2))/(2*9)

y = (6*43^(1/2)+18)/18 or y = (18-6*43^(1/2))/18

(y-((18-6*43^(1/2))/18))*(y-((6*43^(1/2)+18)/18)) = 0

((y-((18-6*43^(1/2))/18))*(y-((6*43^(1/2)+18)/18)))/(2*3) = 0

((y-((18-6*43^(1/2))/18))*(y-((6*43^(1/2)+18)/18)))/(2*3) = 0 // * 2*3

(y-((18-6*43^(1/2))/18))*(y-((6*43^(1/2)+18)/18)) = 0

( y-((18-6*43^(1/2))/18) )

y-((18-6*43^(1/2))/18) = 0 // + (18-6*43^(1/2))/18

y = (18-6*43^(1/2))/18

( y-((6*43^(1/2)+18)/18) )

y-((6*43^(1/2)+18)/18) = 0 // + (6*43^(1/2)+18)/18

y = (6*43^(1/2)+18)/18

y in { (18-6*43^(1/2))/18, (6*43^(1/2)+18)/18 }

See similar equations:

| (x)/(1-x) | | x/1-x=2 | | 1.2(u+5)+2=18.8 | | -n+8=n-6 | | 2x-3x+9=4 | | 10n=13n-120 | | 0.007(5-x)+0.08(x-4)=1 | | 2(x+4)-3=10 | | 0.009(4-x)+0.02(x-7)=1 | | -12y^2+10y+2=0 | | 0.1(k+-5)-4=-2.47 | | 0.009(8-x)+0.08(x-7)=1 | | 3(r-14.1)-1.38=11.22 | | (2u-3)(9+u)=0 | | 4y=6.5-x | | 3z-x=12 | | 10n+13=-11+8n | | V=by/3 | | 20=(x+2)(2x+6) | | X=6.5-4y | | 4(5x-9)-4(1-x)=9(x-11)-1 | | (0.75a-0.5)-1.75=-2.5 | | -3x^2-3y^2+18x=0 | | .02(6c-44)=-.4(c-3) | | 9+6x(21-11)= | | 25+.10x=5000 | | 21=127-15 | | f(-7)=2x+5 | | f(x+8)=2x+5 | | 2.25-1.5a=4 | | 20log(x-2)=5 | | (3/2x^3-37xy)^2 |

Equations solver categories