If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3y-25)(y+15)=180
We move all terms to the left:
(3y-25)(y+15)-(180)=0
We multiply parentheses ..
(+3y^2+45y-25y-375)-180=0
We get rid of parentheses
3y^2+45y-25y-375-180=0
We add all the numbers together, and all the variables
3y^2+20y-555=0
a = 3; b = 20; c = -555;
Δ = b2-4ac
Δ = 202-4·3·(-555)
Δ = 7060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7060}=\sqrt{4*1765}=\sqrt{4}*\sqrt{1765}=2\sqrt{1765}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{1765}}{2*3}=\frac{-20-2\sqrt{1765}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{1765}}{2*3}=\frac{-20+2\sqrt{1765}}{6} $
| 3-5/3x=18 | | -3(2y+1)=-3 | | -2/8x=-14 | | 6x-x=16+4 | | 2^x=530 | | 6a-3=75 | | (149688.48+143429.71+143429.71+139638.80+142869.05+146223.20+x)/6=148931.448 | | (149688.48+143429.71+143429.71+139638.80+142869.05+146223.20+x)/7=148931.448 | | (149.688.48+143.429.71+143.429.71+139.638.80+142.869.05+146.223.20)/6=x | | (2+2)/2=x | | (149.688.48+143.429.71+143.429.71+139.638.80+142.869.05+146.223.20+x)/7=148.931.448 | | 149.688.48+143.429.71+143.429.71+139.638.80+142.869.05+146.223.20+x=148.931.448 | | 6(-4x-3)=-6(3x-3) | | (4u+5)(2+u)=0 | | 12-4w=23 | | 22+x=-50 | | (7+1)*0.9=b | | c+(3.6-2)=9.6 | | 24(f+1)=504 | | 19x+27=x-3 | | 5(m+35)=470 | | 0.00003493*a=5.01 | | 20(f-928)=600 | | 24(p-962)=312 | | 27=d+231/18 | | 27(w+6)=837 | | 30(t+8)=750 | | 21(z+29)=945 | | S+7=1+3/5s | | 46+24u=886 | | 31+29c=872 | | r/10+57=63 |