(3y+1/4y)-10=39

Simple and best practice solution for (3y+1/4y)-10=39 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3y+1/4y)-10=39 equation:



(3y+1/4y)-10=39
We move all terms to the left:
(3y+1/4y)-10-(39)=0
Domain of the equation: 4y)!=0
y!=0/1
y!=0
y∈R
We add all the numbers together, and all the variables
(+3y+1/4y)-10-39=0
We add all the numbers together, and all the variables
(+3y+1/4y)-49=0
We get rid of parentheses
3y+1/4y-49=0
We multiply all the terms by the denominator
3y*4y-49*4y+1=0
Wy multiply elements
12y^2-196y+1=0
a = 12; b = -196; c = +1;
Δ = b2-4ac
Δ = -1962-4·12·1
Δ = 38368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{38368}=\sqrt{16*2398}=\sqrt{16}*\sqrt{2398}=4\sqrt{2398}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-196)-4\sqrt{2398}}{2*12}=\frac{196-4\sqrt{2398}}{24} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-196)+4\sqrt{2398}}{2*12}=\frac{196+4\sqrt{2398}}{24} $

See similar equations:

| 9q−8q=159q−8q=15 | | 9q−8q=15 | | 3x-6=6x+33 | | 6x=103 | | 9x+7=x-7 | | 2.1x-2.3=1.8x+3.1 | | 8=4+3/2t | | 32÷a=-12 | | 6.5x=13.6+2.5x | | (2x-1)(x-2)=0410 | | 4x+41=6x+11 | | 0.6x+0.4(40)=65 | | 4x+14=9x+116 | | 1/3x2+1=0 | | 5x-43=9x-11 | | 6x+12=4x-38 | | 0.0006=0.02x | | 15-3(7+6n)=-19n-(6-n) | | 2.5+0.15=0.4p | | 2r+9=2r+9 | | 8(y-6)=8(y-3) | | 0.3(n-5)=0.4-0.2n | | 4x^2+42x-54=0 | | 2k+9=-3 | | 15-3(7+6x)=-19x-(6-x) | | 5(7-2x)-(10x-6)=24-2(7+10x) | | 5(7−2q)−(10q−6)=24−2(7+10q) | | -9-8x+8=-x+12-7x | | 9x-6-10x=-8-x+2 | | 18^2-17x+5=1 | | 61=7y-2 | | 5x+9=5x+13 |

Equations solver categories