(3y+1)(2y+2)48=180

Simple and best practice solution for (3y+1)(2y+2)48=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3y+1)(2y+2)48=180 equation:



(3y+1)(2y+2)48=180
We move all terms to the left:
(3y+1)(2y+2)48-(180)=0
We multiply parentheses ..
(+6y^2+6y+2y+2)48-180=0
We multiply parentheses
288y^2+288y+96y+96-180=0
We add all the numbers together, and all the variables
288y^2+384y-84=0
a = 288; b = 384; c = -84;
Δ = b2-4ac
Δ = 3842-4·288·(-84)
Δ = 244224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{244224}=\sqrt{2304*106}=\sqrt{2304}*\sqrt{106}=48\sqrt{106}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(384)-48\sqrt{106}}{2*288}=\frac{-384-48\sqrt{106}}{576} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(384)+48\sqrt{106}}{2*288}=\frac{-384+48\sqrt{106}}{576} $

See similar equations:

| –6(c+19)=–18 | | 1/6h+2=7 | | 7/6x+4/3=-11/3 | | x=2=1/2(9x-2) | | 4p–2=18 | | 5(y+5)-y=42 | | 0=-2y-13y+12 | | 2(3x+12)(6x+9)=0 | | ​3v+7v+9v=3v+7v+9v | | 11+6c=47 | | 11/v=5/7 | | -12r+10=58=r=-4 | | 3x-12=6×+24 | | -(4x10=0 | | 7n^2+77n+210=0 | | 5;6=y;95 | | 9x+1=10+2x | | 4m+2(m-5)=24 | | (7x+2x+x)+(19+3+16)=180 | | 7(x+6)+5(3x-2)=11(2x+3)-1 | | 2(x+1)-2=36 | | 7(x+6)+5(3x–2)=11(2x+3)-1 | | 9×=-x/3 | | 2x−3=5x+6 | | -5+-7(8r+6)=-7r-488 | | 5/5=1x | | 3=2t+12 | | 0=16t^2+0t+169 | | (3m+1)(m=5) | | 51/3x=48 | | 20/u=2.5/3 | | –4+8v=10v |

Equations solver categories