(3x2+1)/3x2=1+1=2

Simple and best practice solution for (3x2+1)/3x2=1+1=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x2+1)/3x2=1+1=2 equation:



(3x^2+1)/3x^2=1+1=2
We move all terms to the left:
(3x^2+1)/3x^2-(1+1)=0
Domain of the equation: 3x^2!=0
x^2!=0/3
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
(3x^2+1)/3x^2-2=0
We multiply all the terms by the denominator
(3x^2+1)-2*3x^2=0
Wy multiply elements
-6x^2+(3x^2+1)=0
We get rid of parentheses
-6x^2+3x^2+1=0
We add all the numbers together, and all the variables
-3x^2+1=0
a = -3; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-3)·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-3}=\frac{0-2\sqrt{3}}{-6} =-\frac{2\sqrt{3}}{-6} =-\frac{\sqrt{3}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-3}=\frac{0+2\sqrt{3}}{-6} =\frac{2\sqrt{3}}{-6} =\frac{\sqrt{3}}{-3} $

See similar equations:

| 5x+30=4x+30 | | 1a-0=25 | | A=80+-9x | | x÷(3-6)=6 | | ((n-2)×180)÷n=(360÷4n)×32 | | 5,8=21/x | | 1/4x=5/6x-1 | | 5x+4/8=x+2 | | y=1/7-5 | | {5x+4}/{8}=x+2 | | 6k=k-4 | | 0.7x+x=1 | | 10n+6-4n=30 | | 2.68-x=0.69 | | (x+3)+4x=18 | | 3x^2-4x+256=0x= | | 3x^2-4x-256=0x= | | 4x2+54x-120=0 | | 4y+7=55, | | 10q=120 | | 2z/7-6=5 | | 4.9t^2-7,5t+10= | | |x+3|+4x=18 | | |x-3|+2x=5 | | A=5x34°B=2x+76° | | 3k*3k+3k=48 | | (x+2)(x-3)=(x+1)(x-5) | | 2x-3x/4x+5=1/4 | | 3(y-1)+2(y+3)=30 | | 8x=20+3 | | X=(0,5)(16-8y) | | 32x-(3)+81=0 |

Equations solver categories