(3x-6)(3x-6)=39

Simple and best practice solution for (3x-6)(3x-6)=39 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-6)(3x-6)=39 equation:


Simplifying
(3x + -6)(3x + -6) = 39

Reorder the terms:
(-6 + 3x)(3x + -6) = 39

Reorder the terms:
(-6 + 3x)(-6 + 3x) = 39

Multiply (-6 + 3x) * (-6 + 3x)
(-6(-6 + 3x) + 3x * (-6 + 3x)) = 39
((-6 * -6 + 3x * -6) + 3x * (-6 + 3x)) = 39
((36 + -18x) + 3x * (-6 + 3x)) = 39
(36 + -18x + (-6 * 3x + 3x * 3x)) = 39
(36 + -18x + (-18x + 9x2)) = 39

Combine like terms: -18x + -18x = -36x
(36 + -36x + 9x2) = 39

Solving
36 + -36x + 9x2 = 39

Solving for variable 'x'.

Reorder the terms:
36 + -39 + -36x + 9x2 = 39 + -39

Combine like terms: 36 + -39 = -3
-3 + -36x + 9x2 = 39 + -39

Combine like terms: 39 + -39 = 0
-3 + -36x + 9x2 = 0

Factor out the Greatest Common Factor (GCF), '3'.
3(-1 + -12x + 3x2) = 0

Ignore the factor 3.

Subproblem 1

Set the factor '(-1 + -12x + 3x2)' equal to zero and attempt to solve: Simplifying -1 + -12x + 3x2 = 0 Solving -1 + -12x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -0.3333333333 + -4x + x2 = 0 Move the constant term to the right: Add '0.3333333333' to each side of the equation. -0.3333333333 + -4x + 0.3333333333 + x2 = 0 + 0.3333333333 Reorder the terms: -0.3333333333 + 0.3333333333 + -4x + x2 = 0 + 0.3333333333 Combine like terms: -0.3333333333 + 0.3333333333 = 0.0000000000 0.0000000000 + -4x + x2 = 0 + 0.3333333333 -4x + x2 = 0 + 0.3333333333 Combine like terms: 0 + 0.3333333333 = 0.3333333333 -4x + x2 = 0.3333333333 The x term is -4x. Take half its coefficient (-2). Square it (4) and add it to both sides. Add '4' to each side of the equation. -4x + 4 + x2 = 0.3333333333 + 4 Reorder the terms: 4 + -4x + x2 = 0.3333333333 + 4 Combine like terms: 0.3333333333 + 4 = 4.3333333333 4 + -4x + x2 = 4.3333333333 Factor a perfect square on the left side: (x + -2)(x + -2) = 4.3333333333 Calculate the square root of the right side: 2.081665999 Break this problem into two subproblems by setting (x + -2) equal to 2.081665999 and -2.081665999.

Subproblem 1

x + -2 = 2.081665999 Simplifying x + -2 = 2.081665999 Reorder the terms: -2 + x = 2.081665999 Solving -2 + x = 2.081665999 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = 2.081665999 + 2 Combine like terms: -2 + 2 = 0 0 + x = 2.081665999 + 2 x = 2.081665999 + 2 Combine like terms: 2.081665999 + 2 = 4.081665999 x = 4.081665999 Simplifying x = 4.081665999

Subproblem 2

x + -2 = -2.081665999 Simplifying x + -2 = -2.081665999 Reorder the terms: -2 + x = -2.081665999 Solving -2 + x = -2.081665999 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + x = -2.081665999 + 2 Combine like terms: -2 + 2 = 0 0 + x = -2.081665999 + 2 x = -2.081665999 + 2 Combine like terms: -2.081665999 + 2 = -0.081665999 x = -0.081665999 Simplifying x = -0.081665999

Solution

The solution to the problem is based on the solutions from the subproblems. x = {4.081665999, -0.081665999}

Solution

x = {4.081665999, -0.081665999}

See similar equations:

| (4x-3)+(4x-3)+14= | | 0.02(y-9)=0.05(6y+1)-0.79 | | 2(50-2y-.5z)+4y+z=100 | | 2x+2(4x+23)=146 | | -96=-6(n+8) | | 12x-5=1+x | | 4x+34+6x-28=150 | | 5y-8y=10 | | -2(n+7)=-32+4n | | 8x-9x=-3 | | -268=-2B+8(7b+7) | | 4x+34+6x-28=90 | | -8-3c=6c-11 | | 4x+34+6x-28=180 | | 21+8x=81+4x | | 5x+3(6x-2)=201 | | 8-6x+-8=34 | | U-8=-8 | | -5-3(6-3N)=-6n+22 | | 5(29-y)+2y=100 | | 11=18+7x | | 12x^3-4x^2-13x-4=0 | | x^3-6x^2+14x-7=0 | | 3x+4x+6=10x+4-2x | | 2x+3(6x+4)=252 | | z^2+(2i+3)z+(1+3i)=0 | | -230=5(7N+3) | | 3x+y=8fory | | R+6=5 | | -24-x=15 | | 224=8(9+k) | | x=3-4(x-3) |

Equations solver categories