(3x-4)/(26-x)=x

Simple and best practice solution for (3x-4)/(26-x)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-4)/(26-x)=x equation:



(3x-4)/(26-x)=x
We move all terms to the left:
(3x-4)/(26-x)-(x)=0
Domain of the equation: (26-x)!=0
We move all terms containing x to the left, all other terms to the right
-x!=-26
x!=-26/-1
x!=+26
x∈R
We add all the numbers together, and all the variables
(3x-4)/(-1x+26)-x=0
We add all the numbers together, and all the variables
-1x+(3x-4)/(-1x+26)=0
We multiply all the terms by the denominator
-1x*(-1x+26)+(3x-4)=0
We multiply parentheses
1x^2-26x+(3x-4)=0
We get rid of parentheses
1x^2-26x+3x-4=0
We add all the numbers together, and all the variables
x^2-23x-4=0
a = 1; b = -23; c = -4;
Δ = b2-4ac
Δ = -232-4·1·(-4)
Δ = 545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{545}}{2*1}=\frac{23-\sqrt{545}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{545}}{2*1}=\frac{23+\sqrt{545}}{2} $

See similar equations:

| 2.61=s/3−1.39 | | |7r-1|=0 | | v+11.8/2=–3.4 | | 6+4x3=-20+14 | | 102-v=262 | | 2/3z=2+3/2z–1/2 | | 197=-x+87 | | 2+0.5p=0.3p | | f/2+–6=–8 | | 9.53=3w+5 | | k/–1+4=1.13 | | 2x+4=-(-2x+5) | | y/2+2.53=5.11 | | 4x²=14x+8 | | -2x+4=3x+-1 | | -(x+3)-5x=15 | | m/–1+8.5=12.66 | | 4(b–7)+6=22 | | 24=k+3 | | 5+3=3x=5x-19 | | 2z−–4=18.2 | | -32x+1=-1x-1-10x+17 | | v/–3+3=4 | | 86.8=5x80.8 | | z/3+6=8 | | 3x+7/5=2 | | –4c+–11=5 | | -32x+1=10x+17-17x-1 | | 3x+5=2×+15 | | 1/4x+10=2=-32 | | y/–4+–15=–13 | | 3.95+4m=12.75 |

Equations solver categories