(3x-4)(6x-5)=x

Simple and best practice solution for (3x-4)(6x-5)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-4)(6x-5)=x equation:



(3x-4)(6x-5)=x
We move all terms to the left:
(3x-4)(6x-5)-(x)=0
We add all the numbers together, and all the variables
-1x+(3x-4)(6x-5)=0
We multiply parentheses ..
(+18x^2-15x-24x+20)-1x=0
We get rid of parentheses
18x^2-15x-24x-1x+20=0
We add all the numbers together, and all the variables
18x^2-40x+20=0
a = 18; b = -40; c = +20;
Δ = b2-4ac
Δ = -402-4·18·20
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{10}}{2*18}=\frac{40-4\sqrt{10}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{10}}{2*18}=\frac{40+4\sqrt{10}}{36} $

See similar equations:

| (2x+5)(x+1)=−1 | | 180=5c+2c+38+c+22 | | 180=33+4w+17+w+10 | | 180=65+8u+15+84 | | 180=x+13+3x+7+4x | | 180=76+3t+19+20t-7 | | 180=50+t+20+t-30 | | 4u^2-85u+441=0 | | 180=9a+a+39+a+20 | | 180=x+22+x-22+x-3 | | X/5x-1=3/16 | | 23+3y=-11y-9 | | X=-6+15y | | 180=80+z-4+z-16 | | (2x-5)/2=(3x-1)/4 | | 29=a-17 | | 180=100+5v+3v | | (X+2)+(x+2)+(x+2)=18 | | 3w/8=21 | | 180=67+3s+38 | | 20x-14=11x+4 | | 180=30+3s+2s | | 15/8=3y | | -3w+36=3(w-8) | | 29.2=36.2-b | | 180=52+2b+2b | | -2(y-8)=3y-24 | | 8(x-3)=14(x+5) | | 8(y-3)=14(y+5) | | 3u+33=9(u+3) | | 5x-4(3x+3)=9 | | 4(w-7)+2w=2 |

Equations solver categories