(3x-2x*3)-1/2x=5

Simple and best practice solution for (3x-2x*3)-1/2x=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-2x*3)-1/2x=5 equation:



(3x-2x*3)-1/2x=5
We move all terms to the left:
(3x-2x*3)-1/2x-(5)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
(+3x-2x*3)-1/2x-5=0
We get rid of parentheses
3x-2x*3-1/2x-5=0
We multiply all the terms by the denominator
3x*2x-(2x*3)*2x-5*2x-1=0
We add all the numbers together, and all the variables
3x*2x-(+2x*3)*2x-5*2x-1=0
We multiply parentheses
-12x^2+3x*2x-5*2x-1=0
Wy multiply elements
-12x^2+6x^2-10x-1=0
We add all the numbers together, and all the variables
-6x^2-10x-1=0
a = -6; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·(-6)·(-1)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{19}}{2*-6}=\frac{10-2\sqrt{19}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{19}}{2*-6}=\frac{10+2\sqrt{19}}{-12} $

See similar equations:

| 50t-144=2 | | 1/2(4g)=-20 | | 1/2(4g)=-29 | | 9x7=4 | | 40+5x=5x+50 | | -3.5x0.5=12 | | 100r+200=460 | | 5x8=8x | | |4+4n|=12 | | 125=2.5x | | 5x-3x=3=15 | | -8=15x-8+13 | | -2=5d | | (6x+28)=7x+18 | | 10-3h=3h-2 | | 9(x-9)-17=43 | | q/3+6=12 | | 3k+13=-5 | | 2y+1/5=4/3 | | a2+5a−14=0 | | 4(5x=3)=52 | | 8=3/4c-c+12+4 | | Ag=10 | | 35×3=n | | 100+25x=30+30x | | 12x+7=34x−4 | | 4(8-3x)+5x=3x+2 | | 6=2(y+12) | | 4x-7+3x+6=90 | | 20+-1x-5=20 | | (4f-6)=4(5f-3) | | (4f-6)=4(5f-3 |

Equations solver categories