(3x-17)+(1/2x-5)=360

Simple and best practice solution for (3x-17)+(1/2x-5)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-17)+(1/2x-5)=360 equation:



(3x-17)+(1/2x-5)=360
We move all terms to the left:
(3x-17)+(1/2x-5)-(360)=0
Domain of the equation: 2x-5)!=0
x∈R
We get rid of parentheses
3x+1/2x-17-5-360=0
We multiply all the terms by the denominator
3x*2x-17*2x-5*2x-360*2x+1=0
Wy multiply elements
6x^2-34x-10x-720x+1=0
We add all the numbers together, and all the variables
6x^2-764x+1=0
a = 6; b = -764; c = +1;
Δ = b2-4ac
Δ = -7642-4·6·1
Δ = 583672
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{583672}=\sqrt{4*145918}=\sqrt{4}*\sqrt{145918}=2\sqrt{145918}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-764)-2\sqrt{145918}}{2*6}=\frac{764-2\sqrt{145918}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-764)+2\sqrt{145918}}{2*6}=\frac{764+2\sqrt{145918}}{12} $

See similar equations:

| 4(8.75x)-2=97 | | 4x+5+15=90 | | 28+24h=35+17h | | 3.3-x=3(x=1.7) | | 19+0.55m=3(27+0.10m) | | F(r)=3.14r^2(5) | | -4.12=j/4 | | 27r=756 | | 27z=-837 | | -31=m-437 | | 7x-11=2(13+1x) | | Y=3.88x | | 6m-8=2(m+5 | | (2x+3)2−27=0 | | 19z=-608 | | -14d=224 | | 96=v-41 | | 15=r/18 | | 4–m/5=18 | | 3/4x+5−12x=15 | | 2x^2-69x+20=7x^2-8 | | -4+2=-3(2y+4) | | x^-4=5 | | 2j=7.44 | | y-4/3=10 | | d+-3.96=16.04 | | 1.5x^-4=16 | | -25=u+778 | | 1000(6x-10)=40(345+100x | | 5.3x²+4.7x-10=0 | | 18=p/17 | | 3+x=x-974 |

Equations solver categories