(3x-135)+(1/2x+7)=180

Simple and best practice solution for (3x-135)+(1/2x+7)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x-135)+(1/2x+7)=180 equation:



(3x-135)+(1/2x+7)=180
We move all terms to the left:
(3x-135)+(1/2x+7)-(180)=0
Domain of the equation: 2x+7)!=0
x∈R
We get rid of parentheses
3x+1/2x-135+7-180=0
We multiply all the terms by the denominator
3x*2x-135*2x+7*2x-180*2x+1=0
Wy multiply elements
6x^2-270x+14x-360x+1=0
We add all the numbers together, and all the variables
6x^2-616x+1=0
a = 6; b = -616; c = +1;
Δ = b2-4ac
Δ = -6162-4·6·1
Δ = 379432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{379432}=\sqrt{4*94858}=\sqrt{4}*\sqrt{94858}=2\sqrt{94858}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-616)-2\sqrt{94858}}{2*6}=\frac{616-2\sqrt{94858}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-616)+2\sqrt{94858}}{2*6}=\frac{616+2\sqrt{94858}}{12} $

See similar equations:

| (x-14)+(2x-149)+(1/2x+7)=180 | | 20-4x-2=4x-2x | | 8/11y-1=4/5y-1 | | (6x-13)+(4x)=180 | | (6x-13)+(x)+(3x)=180 | | 108=3x+x | | -2×-8=x+1 | | 2,068÷x=44 | | 374+x=397 | | (x+4)+(4x-39)=90 | | (4n-3)^3=0 | | (4x+5)+(12x+5)=90 | | (4x+5)+(12x+5)=180 | | (4x+5)(12x+5)=180 | | (14x+3)(11x+2)=180 | | X=(3y-10) | | 6n=2n-20 | | 12x-45=6x+27 | | 60z+50-97=-37z+49 | | (n+9)+n(n+3)2n=0 | | -7(y+9)=3y-33 | | x-12=x+44 | | 3^2x-5=81 | | 3=-9x-14x^2 | | -6(8x=2)=-5x-12 | | -6(1-7n)=-30-6n | | y-2.3=5.6 | | 10)-8n-3=28 | | 2(q–20)=-20 | | -16=8a-56 | | 3x^2+12=96 | | -9+x/5=-9 |

Equations solver categories