If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x-1)(x-3)-(4x-5)(3x-4)=6(x-7)-(3x-5)
We move all terms to the left:
(3x-1)(x-3)-(4x-5)(3x-4)-(6(x-7)-(3x-5))=0
We multiply parentheses ..
(+3x^2-9x-1x+3)-(4x-5)(3x-4)-(6(x-7)-(3x-5))=0
We calculate terms in parentheses: -(6(x-7)-(3x-5)), so:We get rid of parentheses
6(x-7)-(3x-5)
We multiply parentheses
6x-(3x-5)-42
We get rid of parentheses
6x-3x+5-42
We add all the numbers together, and all the variables
3x-37
Back to the equation:
-(3x-37)
3x^2-9x-1x-(4x-5)(3x-4)-3x+3+37=0
We multiply parentheses ..
3x^2-(+12x^2-16x-15x+20)-9x-1x-3x+3+37=0
We add all the numbers together, and all the variables
3x^2-(+12x^2-16x-15x+20)-13x+40=0
We get rid of parentheses
3x^2-12x^2+16x+15x-13x-20+40=0
We add all the numbers together, and all the variables
-9x^2+18x+20=0
a = -9; b = 18; c = +20;
Δ = b2-4ac
Δ = 182-4·(-9)·20
Δ = 1044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1044}=\sqrt{36*29}=\sqrt{36}*\sqrt{29}=6\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{29}}{2*-9}=\frac{-18-6\sqrt{29}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{29}}{2*-9}=\frac{-18+6\sqrt{29}}{-18} $
| 5-3c=4 | | x*1.99=3 | | 35-4b=15 | | 9/530+32=f | | ⅓(-12x)=-24 | | 2x-40=98 | | 3x+6+-2x=-2 | | 84=28xH/3 | | n²-3n-10=0 | | 3x+3=6x+24 | | 5x-1/12-x-4/5=x+7/6 | | 52x-3-2•5x-2-3=0 | | 12a=0.096 | | 2(2x-3)-5=29 | | 13a=0.039 | | 2(5x+1)=x+11 | | 4(x-4)-10=-x-16 | | x+4x6=72 | | 3x2=7x-14 | | n²-10n=-13 | | 16-5x=-5+2x | | 3(t-3)=5(3t-1) | | 2n-2=21 | | 1=3x+22 | | 4z+13=9z-7 | | 36-2(20+12÷4x3-2x2)+10=-4 | | A=3n+9 | | -9-(-3)=x | | x/5−1/2=3 | | 3=a-1.5 | | 2w^2+3w=78 | | 3=a-11/2 |