(3x+y+6)dx+(2x+y+1)dy=0

Simple and best practice solution for (3x+y+6)dx+(2x+y+1)dy=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+y+6)dx+(2x+y+1)dy=0 equation:


Simplifying
(3x + y + 6) * dx + (2x + y + 1) * dy = 0

Reorder the terms:
(6 + 3x + y) * dx + (2x + y + 1) * dy = 0

Reorder the terms for easier multiplication:
dx(6 + 3x + y) + (2x + y + 1) * dy = 0
(6 * dx + 3x * dx + y * dx) + (2x + y + 1) * dy = 0

Reorder the terms:
(6dx + dxy + 3dx2) + (2x + y + 1) * dy = 0
(6dx + dxy + 3dx2) + (2x + y + 1) * dy = 0

Reorder the terms:
6dx + dxy + 3dx2 + (1 + 2x + y) * dy = 0

Reorder the terms for easier multiplication:
6dx + dxy + 3dx2 + dy(1 + 2x + y) = 0
6dx + dxy + 3dx2 + (1 * dy + 2x * dy + y * dy) = 0

Reorder the terms:
6dx + dxy + 3dx2 + (2dxy + 1dy + dy2) = 0
6dx + dxy + 3dx2 + (2dxy + 1dy + dy2) = 0

Reorder the terms:
6dx + dxy + 2dxy + 3dx2 + 1dy + dy2 = 0

Combine like terms: dxy + 2dxy = 3dxy
6dx + 3dxy + 3dx2 + 1dy + dy2 = 0

Solving
6dx + 3dxy + 3dx2 + 1dy + dy2 = 0

Solving for variable 'd'.

Move all terms containing d to the left, all other terms to the right.

Factor out the Greatest Common Factor (GCF), 'd'.
d(6x + 3xy + 3x2 + y + y2) = 0

Subproblem 1

Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0

Subproblem 2

Set the factor '(6x + 3xy + 3x2 + y + y2)' equal to zero and attempt to solve: Simplifying 6x + 3xy + 3x2 + y + y2 = 0 Solving 6x + 3xy + 3x2 + y + y2 = 0 Move all terms containing d to the left, all other terms to the right. Add '-6x' to each side of the equation. 6x + 3xy + 3x2 + y + -6x + y2 = 0 + -6x Reorder the terms: 6x + -6x + 3xy + 3x2 + y + y2 = 0 + -6x Combine like terms: 6x + -6x = 0 0 + 3xy + 3x2 + y + y2 = 0 + -6x 3xy + 3x2 + y + y2 = 0 + -6x Remove the zero: 3xy + 3x2 + y + y2 = -6x Add '-3xy' to each side of the equation. 3xy + 3x2 + y + -3xy + y2 = -6x + -3xy Reorder the terms: 3xy + -3xy + 3x2 + y + y2 = -6x + -3xy Combine like terms: 3xy + -3xy = 0 0 + 3x2 + y + y2 = -6x + -3xy 3x2 + y + y2 = -6x + -3xy Add '-3x2' to each side of the equation. 3x2 + y + -3x2 + y2 = -6x + -3xy + -3x2 Reorder the terms: 3x2 + -3x2 + y + y2 = -6x + -3xy + -3x2 Combine like terms: 3x2 + -3x2 = 0 0 + y + y2 = -6x + -3xy + -3x2 y + y2 = -6x + -3xy + -3x2 Add '-1y' to each side of the equation. y + -1y + y2 = -6x + -3xy + -3x2 + -1y Combine like terms: y + -1y = 0 0 + y2 = -6x + -3xy + -3x2 + -1y y2 = -6x + -3xy + -3x2 + -1y Add '-1y2' to each side of the equation. y2 + -1y2 = -6x + -3xy + -3x2 + -1y + -1y2 Combine like terms: y2 + -1y2 = 0 0 = -6x + -3xy + -3x2 + -1y + -1y2 Simplifying 0 = -6x + -3xy + -3x2 + -1y + -1y2 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

d = {0}

See similar equations:

| 7x+x+23x+20x= | | 9x^2+6y^2+36y=3 | | b-1/3=7/12 | | (x+35)=-7 | | 7x-7+14x-4=14x-56 | | 3a+10+a=90 | | 1.3*0.15/100= | | 1.3x.15/100 | | 180-126= | | 5x-(-7)-11x+3=x-25 | | 126+x=180 | | 36+4x=140 | | 225/3 | | (3x^3y)^2/-9x^2y | | 48/28 | | 6x^2-17x+11=-5+3x | | x^2-y^2-2x+4y=4 | | -18x^5/12x^2 | | B=nz^4/S | | 4a^2-a-24=0 | | 7a=13 | | 2x-9+2x+9+x=180 | | 3[-(2+5)]+3x=-(2+1) | | X+(x*.011)=2.79 | | −12(2/3x−3/4)−7/2x=-83/24−12(2/3x−3/4)−7/2x=-83/24 | | 3-w/81-w | | −12(2/3x−3/4)−7/2x=-83/24 | | -(2-6)+x+4x=6+4x | | 3x-6+3=9-(-3) | | x+22=5x+2 | | x^252=7 | | 4x-2=-3/4 |

Equations solver categories