(3x+7)/(6x)+1/x=1

Simple and best practice solution for (3x+7)/(6x)+1/x=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+7)/(6x)+1/x=1 equation:



(3x+7)/(6x)+1/x=1
We move all terms to the left:
(3x+7)/(6x)+1/x-(1)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: x!=0
x∈R
We calculate fractions
(3x^2+7x)/6x^2+6x/6x^2-1=0
We multiply all the terms by the denominator
(3x^2+7x)+6x-1*6x^2=0
We add all the numbers together, and all the variables
6x+(3x^2+7x)-1*6x^2=0
Wy multiply elements
-6x^2+6x+(3x^2+7x)=0
We get rid of parentheses
-6x^2+3x^2+6x+7x=0
We add all the numbers together, and all the variables
-3x^2+13x=0
a = -3; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-3)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-3}=\frac{-26}{-6} =4+1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-3}=\frac{0}{-6} =0 $

See similar equations:

| 2-4x-6=3x+6 | | 5x+2x+9=18 | | c4.6=−2.5 | | 2(x-6)-8=-20 | | 6x+3=6×-20-× | | -15=x/4-8 | | 7(3x+4)=5x=4) | | .-2{7-n=}+4 | | 35m=m | | 3(-2x-6)+8=3x+8 | | 8/4=88/x | | -3x-4(4+4x)=-73 | | 3(-2x-6)+8=3×+ | | 1=0.3x-0.5-9 | | 1=0.3x-0.5-13 | | 2+2(x+7)=30 | | -14=16-2g-10-8g | | -1=-2n-5 | | 9(x-3)+1=-8 | | 52​(8x+3)=14 | | 18/21=x/12 | | 5y+18-3y=22 | | -16x^2+16+672=0 | | x8=(-56) | | 2x+5+4x-25=180 | | -6x-7=-3x-10 | | -27=5w-8 | | 44=-11b+b+33 | | 1/6w=19 | | F(x)=x+5/x+9 | | 5x-(3x-8)=3x-2 | | 637x=8281 |

Equations solver categories