If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+6)(3x+20.4)=(5x-19)(2x-4)
We move all terms to the left:
(3x+6)(3x+20.4)-((5x-19)(2x-4))=0
We multiply parentheses ..
(+9x^2+61.2x+18x+122.4)-((5x-19)(2x-4))=0
We calculate terms in parentheses: -((5x-19)(2x-4)), so:We get rid of parentheses
(5x-19)(2x-4)
We multiply parentheses ..
(+10x^2-20x-38x+76)
We get rid of parentheses
10x^2-20x-38x+76
We add all the numbers together, and all the variables
10x^2-58x+76
Back to the equation:
-(10x^2-58x+76)
9x^2-10x^2+61.2x+18x+58x+122.4-76=0
We add all the numbers together, and all the variables
-1x^2+137.2x+46.4=0
a = -1; b = 137.2; c = +46.4;
Δ = b2-4ac
Δ = 137.22-4·(-1)·46.4
Δ = 19009.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(137.2)-\sqrt{19009.44}}{2*-1}=\frac{-137.2-\sqrt{19009.44}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(137.2)+\sqrt{19009.44}}{2*-1}=\frac{-137.2+\sqrt{19009.44}}{-2} $
| (3x+6)°=(3x+20.4)° | | 10.4-x=2.6 | | -36=8u+4(u-6) | | (3x+6)°(3x+20.4)°=(5x-19)°(2x-4)° | | 2(w-+6)+7w=21 | | 4x^2−5=2x+7 | | 4^6x=52 | | m+5=-4 | | 3.7+v=14.8 | | 7^(3x-51)=3^(3x-51) | | 9×+2+7x+18=180 | | d=0.5(19.39)(21)^2 | | d=0.5(19.39,21)^2 | | d=0.5(19.3921)^2 | | 2x-12+56=180 | | x-0.2x=-8 | | 4x+5x+6-4=180 | | 6x+17+8x+9=180 | | 6y+1=13. | | -16x-15=-63-16x=-48 | | X2+(x+2)2=52 | | 3^4^x=9^3^x+7 | | 8. (3x–18)/6=x/5 | | 10n-13=-3n | | 12x-11=7x+24 | | 4n+n=9-2 | | 8b-16=20(b=-1) | | 8b-16=20 | | 3a+7=28(a=1) | | 1/5n+3n=288 | | U=400x-1200 | | 2(2x-4)(3x-6)x=0 |