(3x+5)x=730

Simple and best practice solution for (3x+5)x=730 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+5)x=730 equation:


Simplifying
(3x + 5) * x = 730

Reorder the terms:
(5 + 3x) * x = 730

Reorder the terms for easier multiplication:
x(5 + 3x) = 730
(5 * x + 3x * x) = 730
(5x + 3x2) = 730

Solving
5x + 3x2 = 730

Solving for variable 'x'.

Reorder the terms:
-730 + 5x + 3x2 = 730 + -730

Combine like terms: 730 + -730 = 0
-730 + 5x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-243.3333333 + 1.666666667x + x2 = 0

Move the constant term to the right:

Add '243.3333333' to each side of the equation.
-243.3333333 + 1.666666667x + 243.3333333 + x2 = 0 + 243.3333333

Reorder the terms:
-243.3333333 + 243.3333333 + 1.666666667x + x2 = 0 + 243.3333333

Combine like terms: -243.3333333 + 243.3333333 = 0.0000000
0.0000000 + 1.666666667x + x2 = 0 + 243.3333333
1.666666667x + x2 = 0 + 243.3333333

Combine like terms: 0 + 243.3333333 = 243.3333333
1.666666667x + x2 = 243.3333333

The x term is 1.666666667x.  Take half its coefficient (0.8333333335).
Square it (0.6944444447) and add it to both sides.

Add '0.6944444447' to each side of the equation.
1.666666667x + 0.6944444447 + x2 = 243.3333333 + 0.6944444447

Reorder the terms:
0.6944444447 + 1.666666667x + x2 = 243.3333333 + 0.6944444447

Combine like terms: 243.3333333 + 0.6944444447 = 244.0277777447
0.6944444447 + 1.666666667x + x2 = 244.0277777447

Factor a perfect square on the left side:
(x + 0.8333333335)(x + 0.8333333335) = 244.0277777447

Calculate the square root of the right side: 15.62138847

Break this problem into two subproblems by setting 
(x + 0.8333333335) equal to 15.62138847 and -15.62138847.

Subproblem 1

x + 0.8333333335 = 15.62138847 Simplifying x + 0.8333333335 = 15.62138847 Reorder the terms: 0.8333333335 + x = 15.62138847 Solving 0.8333333335 + x = 15.62138847 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 15.62138847 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 15.62138847 + -0.8333333335 x = 15.62138847 + -0.8333333335 Combine like terms: 15.62138847 + -0.8333333335 = 14.7880551365 x = 14.7880551365 Simplifying x = 14.7880551365

Subproblem 2

x + 0.8333333335 = -15.62138847 Simplifying x + 0.8333333335 = -15.62138847 Reorder the terms: 0.8333333335 + x = -15.62138847 Solving 0.8333333335 + x = -15.62138847 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -15.62138847 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -15.62138847 + -0.8333333335 x = -15.62138847 + -0.8333333335 Combine like terms: -15.62138847 + -0.8333333335 = -16.4547218035 x = -16.4547218035 Simplifying x = -16.4547218035

Solution

The solution to the problem is based on the solutions from the subproblems. x = {14.7880551365, -16.4547218035}

See similar equations:

| S=y(100+0.5y) | | Y=2X^2+12X+14 | | (1/16)/x=283 | | x+5+20=x-6 | | -3(5x+1)-2(x-2)= | | 1/16*x=283 | | 15-5z=-4z | | z+2=z+12 | | 7x2/3 | | -6+2y=9 | | 6x-24+7=5 | | 10x+40=15x-5 | | 3ln(2x+6)=22 | | 7/9x=3/5 | | 9x+8+8x+9= | | 150000j=100n*D | | 6x+9y+6x+6y= | | 2/3x-8-4 | | y=-(1)+8.4 | | 17x+15x=-28 | | 358.7+2.3= | | x+5=20+6 | | x+5=20-6 | | 5w(12w+7)=0 | | 21-45=3(x-1)-9 | | 0.20x+0.35(50)=27.5 | | -6(x+2)-12=22+8 | | 14(x-8)=-8-6 | | X=-54+3x | | (x+4)(x-5)(x-7)(x+10)=0 | | 4.5*1.009= | | 0.12(18)+0.02X=0.06(18+x) |

Equations solver categories