If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+3)4x=132
We move all terms to the left:
(3x+3)4x-(132)=0
We multiply parentheses
12x^2+12x-132=0
a = 12; b = 12; c = -132;
Δ = b2-4ac
Δ = 122-4·12·(-132)
Δ = 6480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6480}=\sqrt{1296*5}=\sqrt{1296}*\sqrt{5}=36\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-36\sqrt{5}}{2*12}=\frac{-12-36\sqrt{5}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+36\sqrt{5}}{2*12}=\frac{-12+36\sqrt{5}}{24} $
| (x-5)-2=-6 | | (4x+11)=9x | | -7x+2=2x-9x | | 23=-7(3h-4) | | X+3/3=x+15 | | 10x-13=(8x+17) | | -400=13x-166 | | 4x-5=10-x+5x-15 | | x^2+7=21 | | (p+0.75)3=5.88 | | (6x+12)=(5x+28) | | 7k-6-3=-16 | | 1/2h=16 | | 6t=–4+8t | | 2(x-10)+4=6 | | x÷24/7=48 | | 6a-9a=-29 | | -1=x/22+2 | | -0.01x-(-0.02(-1x+3)+0.11-0.02=0 | | 3f=–7+4f | | 200+(a*12)=644 | | 30+p=50 | | 8-(6+7r)=24 | | 23-5x=23+5x | | 3x+44/7+x+16/4=13 | | 3(7x-2)=30+50x | | -x÷3+1=-3x÷5 | | 0.08(y-2)+0.12y=0.14y-0.01(10) | | (3/4x)-3=3(x+2) | | -172=15x-67 | | 2w=33 | | 7k+5=16 |