(3x+29)(6x-3)+37=180

Simple and best practice solution for (3x+29)(6x-3)+37=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+29)(6x-3)+37=180 equation:



(3x+29)(6x-3)+37=180
We move all terms to the left:
(3x+29)(6x-3)+37-(180)=0
We add all the numbers together, and all the variables
(3x+29)(6x-3)-143=0
We multiply parentheses ..
(+18x^2-9x+174x-87)-143=0
We get rid of parentheses
18x^2-9x+174x-87-143=0
We add all the numbers together, and all the variables
18x^2+165x-230=0
a = 18; b = 165; c = -230;
Δ = b2-4ac
Δ = 1652-4·18·(-230)
Δ = 43785
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{43785}=\sqrt{9*4865}=\sqrt{9}*\sqrt{4865}=3\sqrt{4865}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(165)-3\sqrt{4865}}{2*18}=\frac{-165-3\sqrt{4865}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(165)+3\sqrt{4865}}{2*18}=\frac{-165+3\sqrt{4865}}{36} $

See similar equations:

| 9/14=9/n | | 2x+5-6x=15 | | 5m+18+27=90 | | 3x+3=-4-4 | | (2w+7)=7+(w-5) | | 5x-1(14x-x)=-30-2x | | -16=-5m-(-3m-2) | | |15w+65|=-25 | | -3z-16z+1=-7-19z | | r/2.1=2.6/2.8 | | 7x+1=57* | | 4y+4+38=90 | | (x+12)(4x-33)=0 | | 7c−5=2c | | 3(x+1)-4=3x+1 | | -62=5(4j+2)-2j | | A5=n+8 | | −7=287s | | 5(2x=1)=11x | | 12x-7=3x+14+5x-33 | | 20x-5-12×=10x+8 | | 5y-77=-4y+4 | | (107-12)(6x-3)+37=180 | | A4=n+8 | | 5(n-5)=-20 | | 12x-7+3x+14=5x-33 | | (-4)x-2=10 | | (2x+7)=(4x-17) | | 8x-10-2x=4x-20 | | x(24+89+26)=120 | | -7+4x=57 | | 4x+7=118 |

Equations solver categories