(3x+25)=(2x+10)(2x-25)

Simple and best practice solution for (3x+25)=(2x+10)(2x-25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+25)=(2x+10)(2x-25) equation:



(3x+25)=(2x+10)(2x-25)
We move all terms to the left:
(3x+25)-((2x+10)(2x-25))=0
We get rid of parentheses
3x-((2x+10)(2x-25))+25=0
We multiply parentheses ..
-((+4x^2-50x+20x-250))+3x+25=0
We calculate terms in parentheses: -((+4x^2-50x+20x-250)), so:
(+4x^2-50x+20x-250)
We get rid of parentheses
4x^2-50x+20x-250
We add all the numbers together, and all the variables
4x^2-30x-250
Back to the equation:
-(4x^2-30x-250)
We add all the numbers together, and all the variables
3x-(4x^2-30x-250)+25=0
We get rid of parentheses
-4x^2+3x+30x+250+25=0
We add all the numbers together, and all the variables
-4x^2+33x+275=0
a = -4; b = 33; c = +275;
Δ = b2-4ac
Δ = 332-4·(-4)·275
Δ = 5489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-\sqrt{5489}}{2*-4}=\frac{-33-\sqrt{5489}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+\sqrt{5489}}{2*-4}=\frac{-33+\sqrt{5489}}{-8} $

See similar equations:

| 4(6+n)/7=6 | | –2+3s=–9+4s | | 15k-8=3k+1/4 | | 9/200=x/420 | | 3x-9=;x=5 | | r−10=39 | | 3x-9=;x= | | x-4.89=1.3* | | -1+-3z=-10 | | 7/6y+1=1/6y+8 | | x=306x+2 | | -71+9n=5n-7 | | 16x+3=6+24 | | -3x+20=-5-10 | | 20+14.50w=38+12.50w | | 6d−11/2​=2d−13/2= | | -15/7=-3u | | -105=-15k | | 9n+16=5n+84 | | 3x-90=6 | | m-8=0.14 | | 4s+5+3s=-16 | | 6(x+4)=5x+15 | | 3(n+4)/4=3 | | -15+x=18 | | -1/7=-1/2x-1/3 | | 3|2x-4|=-3 | | 49=7r+14 | | 16=-9+5y | | (3x-5)/2+6=14 | | 3-|4x-1|=-6 | | –3v+5=–3v−3 |

Equations solver categories