(3x+2)(x-1)=(x+1)(x+1)-3

Simple and best practice solution for (3x+2)(x-1)=(x+1)(x+1)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+2)(x-1)=(x+1)(x+1)-3 equation:



(3x+2)(x-1)=(x+1)(x+1)-3
We move all terms to the left:
(3x+2)(x-1)-((x+1)(x+1)-3)=0
We multiply parentheses ..
(+3x^2-3x+2x-2)-((x+1)(x+1)-3)=0
We calculate terms in parentheses: -((x+1)(x+1)-3), so:
(x+1)(x+1)-3
We multiply parentheses ..
(+x^2+x+x+1)-3
We get rid of parentheses
x^2+x+x+1-3
We add all the numbers together, and all the variables
x^2+2x-2
Back to the equation:
-(x^2+2x-2)
We get rid of parentheses
3x^2-x^2-3x+2x-2x-2+2=0
We add all the numbers together, and all the variables
2x^2-3x=0
a = 2; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·2·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*2}=\frac{0}{4} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*2}=\frac{6}{4} =1+1/2 $

See similar equations:

| 8x+16x-3=12x+16-4 | | 12–5a=2–(8+2a) | | x-2/2x+8=3/2 | | .64-8.1u=-9.2u-10.8 | | |3n-1|+15=3 | | (4/3)+(1/3)x-2=2x | | 9y-49=0 | | 5/4b+(b-15)=150 | | -10x+3x+6=-5-12x+16+3x | | 0.2x-2.3=-5.9 | | 8+4x=3x-3+19 | | 2x-26=5x-38 | | 5x/5=-70/5 | | 29+7d=5d+5 | | 4-3n-8=2 | | (3x+2)(x-1)=(x+1)^2-3 | | 4x-6=1x+11 | | x+19÷-2=5 | | 8.1+17.7v=17.1v | | 7+2b+5b= | | 3(x-2)+4(2-x)=16 | | 1/2(3g+2)=g/6 | | 2835x-1710=45(63x-38) | | 2+(3x/5)=4/3 | | -2=-5t-10+2t | | x/3x+4=9x+3 | | -6.8-14.2d=14.2 | | 4p+9=3p | | g(-2)=(-2)*3+7 | | -50d=-100 | | -6.8-4.2d=14.2 | | -8.6j+2.9j+17.86=-7.7j-16.54 |

Equations solver categories