(3x+2)(x+2)=100

Simple and best practice solution for (3x+2)(x+2)=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+2)(x+2)=100 equation:


Simplifying
(3x + 2)(x + 2) = 100

Reorder the terms:
(2 + 3x)(x + 2) = 100

Reorder the terms:
(2 + 3x)(2 + x) = 100

Multiply (2 + 3x) * (2 + x)
(2(2 + x) + 3x * (2 + x)) = 100
((2 * 2 + x * 2) + 3x * (2 + x)) = 100
((4 + 2x) + 3x * (2 + x)) = 100
(4 + 2x + (2 * 3x + x * 3x)) = 100
(4 + 2x + (6x + 3x2)) = 100

Combine like terms: 2x + 6x = 8x
(4 + 8x + 3x2) = 100

Solving
4 + 8x + 3x2 = 100

Solving for variable 'x'.

Reorder the terms:
4 + -100 + 8x + 3x2 = 100 + -100

Combine like terms: 4 + -100 = -96
-96 + 8x + 3x2 = 100 + -100

Combine like terms: 100 + -100 = 0
-96 + 8x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-32 + 2.666666667x + x2 = 0

Move the constant term to the right:

Add '32' to each side of the equation.
-32 + 2.666666667x + 32 + x2 = 0 + 32

Reorder the terms:
-32 + 32 + 2.666666667x + x2 = 0 + 32

Combine like terms: -32 + 32 = 0
0 + 2.666666667x + x2 = 0 + 32
2.666666667x + x2 = 0 + 32

Combine like terms: 0 + 32 = 32
2.666666667x + x2 = 32

The x term is 2.666666667x.  Take half its coefficient (1.333333334).
Square it (1.777777780) and add it to both sides.

Add '1.777777780' to each side of the equation.
2.666666667x + 1.777777780 + x2 = 32 + 1.777777780

Reorder the terms:
1.777777780 + 2.666666667x + x2 = 32 + 1.777777780

Combine like terms: 32 + 1.777777780 = 33.77777778
1.777777780 + 2.666666667x + x2 = 33.77777778

Factor a perfect square on the left side:
(x + 1.333333334)(x + 1.333333334) = 33.77777778

Calculate the square root of the right side: 5.811865258

Break this problem into two subproblems by setting 
(x + 1.333333334) equal to 5.811865258 and -5.811865258.

Subproblem 1

x + 1.333333334 = 5.811865258 Simplifying x + 1.333333334 = 5.811865258 Reorder the terms: 1.333333334 + x = 5.811865258 Solving 1.333333334 + x = 5.811865258 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + x = 5.811865258 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + x = 5.811865258 + -1.333333334 x = 5.811865258 + -1.333333334 Combine like terms: 5.811865258 + -1.333333334 = 4.478531924 x = 4.478531924 Simplifying x = 4.478531924

Subproblem 2

x + 1.333333334 = -5.811865258 Simplifying x + 1.333333334 = -5.811865258 Reorder the terms: 1.333333334 + x = -5.811865258 Solving 1.333333334 + x = -5.811865258 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + x = -5.811865258 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + x = -5.811865258 + -1.333333334 x = -5.811865258 + -1.333333334 Combine like terms: -5.811865258 + -1.333333334 = -7.145198592 x = -7.145198592 Simplifying x = -7.145198592

Solution

The solution to the problem is based on the solutions from the subproblems. x = {4.478531924, -7.145198592}

See similar equations:

| x^3+5x^2+3x+15=0 | | 5x+32+9x=x | | 3(3x+5)=9x+15 | | 2y+3x=-18 | | 3-4(a+1)=9+a | | 4(2x-3)=5(2x-1) | | -3y-x=2 | | y-(-13)=-2 | | 2(2x-4)=4x | | x^2+3xy^3-x=3 | | y-(-1.8)=-4.8 | | 3z-7-z+3=0 | | y+2x=-6 | | 3y-2x=-2 | | 3(b+1)=4b+1 | | x-y-5=0 | | 10a^3+7a^2+1a= | | 8x+12=10x-18 | | (3m+8n)(3m-8n)= | | 12=3b+6a | | 5(10y-2)=2(2y+20) | | a+15=18 | | 50x+278=850 | | 16x-43=-33 | | 0=x^2+8x-16 | | -3=-3(1-4a) | | 7x-9=3x+31 | | 3.21-7y=10y-1.84 | | 29x^2-29x=0 | | t-1.3=-5.3 | | 7x+8=5x+10 | | (1-9a)(1-7a)= |

Equations solver categories