(3x+2)(5x-1)-1=3x(x-1)

Simple and best practice solution for (3x+2)(5x-1)-1=3x(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x+2)(5x-1)-1=3x(x-1) equation:


Simplifying
(3x + 2)(5x + -1) + -1 = 3x(x + -1)

Reorder the terms:
(2 + 3x)(5x + -1) + -1 = 3x(x + -1)

Reorder the terms:
(2 + 3x)(-1 + 5x) + -1 = 3x(x + -1)

Multiply (2 + 3x) * (-1 + 5x)
(2(-1 + 5x) + 3x * (-1 + 5x)) + -1 = 3x(x + -1)
((-1 * 2 + 5x * 2) + 3x * (-1 + 5x)) + -1 = 3x(x + -1)
((-2 + 10x) + 3x * (-1 + 5x)) + -1 = 3x(x + -1)
(-2 + 10x + (-1 * 3x + 5x * 3x)) + -1 = 3x(x + -1)
(-2 + 10x + (-3x + 15x2)) + -1 = 3x(x + -1)

Combine like terms: 10x + -3x = 7x
(-2 + 7x + 15x2) + -1 = 3x(x + -1)

Reorder the terms:
-2 + -1 + 7x + 15x2 = 3x(x + -1)

Combine like terms: -2 + -1 = -3
-3 + 7x + 15x2 = 3x(x + -1)

Reorder the terms:
-3 + 7x + 15x2 = 3x(-1 + x)
-3 + 7x + 15x2 = (-1 * 3x + x * 3x)
-3 + 7x + 15x2 = (-3x + 3x2)

Solving
-3 + 7x + 15x2 = -3x + 3x2

Solving for variable 'x'.

Reorder the terms:
-3 + 7x + 3x + 15x2 + -3x2 = -3x + 3x2 + 3x + -3x2

Combine like terms: 7x + 3x = 10x
-3 + 10x + 15x2 + -3x2 = -3x + 3x2 + 3x + -3x2

Combine like terms: 15x2 + -3x2 = 12x2
-3 + 10x + 12x2 = -3x + 3x2 + 3x + -3x2

Reorder the terms:
-3 + 10x + 12x2 = -3x + 3x + 3x2 + -3x2

Combine like terms: -3x + 3x = 0
-3 + 10x + 12x2 = 0 + 3x2 + -3x2
-3 + 10x + 12x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
-3 + 10x + 12x2 = 0

Begin completing the square.  Divide all terms by
12 the coefficient of the squared term: 

Divide each side by '12'.
-0.25 + 0.8333333333x + x2 = 0

Move the constant term to the right:

Add '0.25' to each side of the equation.
-0.25 + 0.8333333333x + 0.25 + x2 = 0 + 0.25

Reorder the terms:
-0.25 + 0.25 + 0.8333333333x + x2 = 0 + 0.25

Combine like terms: -0.25 + 0.25 = 0.00
0.00 + 0.8333333333x + x2 = 0 + 0.25
0.8333333333x + x2 = 0 + 0.25

Combine like terms: 0 + 0.25 = 0.25
0.8333333333x + x2 = 0.25

The x term is 0.8333333333x.  Take half its coefficient (0.4166666667).
Square it (0.1736111111) and add it to both sides.

Add '0.1736111111' to each side of the equation.
0.8333333333x + 0.1736111111 + x2 = 0.25 + 0.1736111111

Reorder the terms:
0.1736111111 + 0.8333333333x + x2 = 0.25 + 0.1736111111

Combine like terms: 0.25 + 0.1736111111 = 0.4236111111
0.1736111111 + 0.8333333333x + x2 = 0.4236111111

Factor a perfect square on the left side:
(x + 0.4166666667)(x + 0.4166666667) = 0.4236111111

Calculate the square root of the right side: 0.65085414

Break this problem into two subproblems by setting 
(x + 0.4166666667) equal to 0.65085414 and -0.65085414.

Subproblem 1

x + 0.4166666667 = 0.65085414 Simplifying x + 0.4166666667 = 0.65085414 Reorder the terms: 0.4166666667 + x = 0.65085414 Solving 0.4166666667 + x = 0.65085414 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + x = 0.65085414 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + x = 0.65085414 + -0.4166666667 x = 0.65085414 + -0.4166666667 Combine like terms: 0.65085414 + -0.4166666667 = 0.2341874733 x = 0.2341874733 Simplifying x = 0.2341874733

Subproblem 2

x + 0.4166666667 = -0.65085414 Simplifying x + 0.4166666667 = -0.65085414 Reorder the terms: 0.4166666667 + x = -0.65085414 Solving 0.4166666667 + x = -0.65085414 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.4166666667' to each side of the equation. 0.4166666667 + -0.4166666667 + x = -0.65085414 + -0.4166666667 Combine like terms: 0.4166666667 + -0.4166666667 = 0.0000000000 0.0000000000 + x = -0.65085414 + -0.4166666667 x = -0.65085414 + -0.4166666667 Combine like terms: -0.65085414 + -0.4166666667 = -1.0675208067 x = -1.0675208067 Simplifying x = -1.0675208067

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.2341874733, -1.0675208067}

See similar equations:

| -7(-9x-22)=-665 | | c+b=5p | | -27x+13x-5=3-14x | | 3x+.50y=6 | | Y=40+2x | | b+c=5p | | -24y+36-y=-3y+9 | | 6(n+3)=48 | | lnx+ln^2=3 | | 4y-23=-107 | | 4x+2(0)=24 | | 4(0)+2y=24 | | 30-9z=7z+21 | | 8(n+3)=64 | | -8=n/4-3 | | 2n-(-1)=17 | | 2-6w=3w-1 | | 4.5q=-32.4 | | 11/k=8/9 | | -6(5x+19)=156 | | 2w-8=3(w-2)+2 | | -(x+13)=123 | | a/2=10/9 | | (4+6)-7(9-4)/3= | | 2/8=-x/11 | | 73=-6k-42+6k+30 | | 7/3=n/2 | | 0.5x-0.6=8 | | -7x-3x=-8x-8 | | 9x-9=4(x+4) | | 12-6(-3)=2(-3)+36 | | 9(t+50)+15t=52.5 |

Equations solver categories