If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3x+2)(3x-2)=-(x-3)(x+1)
We move all terms to the left:
(3x+2)(3x-2)-(-(x-3)(x+1))=0
We use the square of the difference formula
9x^2-(-(x-3)(x+1))-4=0
We multiply parentheses ..
9x^2-(-(+x^2+x-3x-3))-4=0
We calculate terms in parentheses: -(-(+x^2+x-3x-3)), so:We get rid of parentheses
-(+x^2+x-3x-3)
We get rid of parentheses
-x^2-x+3x+3
We add all the numbers together, and all the variables
-1x^2+2x+3
Back to the equation:
-(-1x^2+2x+3)
9x^2+1x^2-2x-3-4=0
We add all the numbers together, and all the variables
10x^2-2x-7=0
a = 10; b = -2; c = -7;
Δ = b2-4ac
Δ = -22-4·10·(-7)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{71}}{2*10}=\frac{2-2\sqrt{71}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{71}}{2*10}=\frac{2+2\sqrt{71}}{20} $
| -9v-7=-8v | | 2+7x=7+6x | | -4k-8=-2k | | x^2-40x+464=0 | | -3x+15=7x-21 | | 10+7n+7=10n-10 | | a1=61 | | 2+7x=2+2x | | 1/2(5x-4)=x/1+11/2 | | 2+7x=1+1x | | -7+9u=8u+3 | | 2+7x=0+0x | | (3/4x)+(6/x)=1 | | 2+7x=2+6x | | -5c+6=-2c | | 2+7x=2+7x | | 2+7x=3+4x | | 2+7x=4+9x | | 5c+6=-2c | | 1t+10=-10+3t | | -5p-1=-6p | | 162.6=7*11.6*x | | -9-8x+x2=0 | | 1622/5=7*113/5*h | | 9g=10g-9 | | 3y/5-2/5=4/5 | | U-8=-u+6 | | 10=0.25x^2 | | 0=–x2+2x+1 | | 4(4w+7)/5=-8 | | 2a/5+9=0 | | 1/4=3^x-x |